bruhat cell
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
P. Gavrylenko ◽  
M. Semenyakin ◽  
Y. Zenkevich

Abstract We notice a remarkable connection between the Bazhanov-Sergeev solution of Zamolodchikov tetrahedron equation and certain well-known cluster algebra expression. The tetrahedron transformation is then identified with a sequence of four mutations. As an application of the new formalism, we show how to construct an integrable system with the spectral curve with arbitrary symmetric Newton polygon. Finally, we embed this integrable system into the double Bruhat cell of a Poisson-Lie group, show how triangular decomposition can be used to extend our approach to the general non-symmetric Newton polygons, and prove the Lemma which classifies conjugacy classes in double affine Weyl groups of A-type by decorated Newton polygons.


2018 ◽  
Vol 2020 (3) ◽  
pp. 914-956 ◽  
Author(s):  
Dylan Rupel ◽  
Salvatore Stella ◽  
Harold Williams

Abstract The cluster algebra of any acyclic quiver can be realized as the coordinate ring of a subvariety of a Kac–Moody group—the quiver is an orientation of its Dynkin diagram, defining a Coxeter element and thereby a double Bruhat cell. We use this realization to connect representations of the quiver with those of the group. We show that cluster variables of preprojective (resp. postinjective) quiver representations are realized by generalized minors of highest-weight (resp. lowest-weight) group representations, generalizing results of Yang–Zelevinsky in finite type. In type $A_{n}^{\!(1)}$ and finitely many other affine types, we show that cluster variables of regular quiver representations are realized by generalized minors of group representations that are neither highest- nor lowest-weight; we conjecture this holds more generally.


Sign in / Sign up

Export Citation Format

Share Document