projective line
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 53)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
YÛSUKE OKUYAMA

Abstract We show that a rational function f of degree $>1$ on the projective line over an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value has no potentially good reductions if and only if the Berkovich Julia set of f is uniformly perfect. As an application, a uniform regularity of the boundary of each Berkovich Fatou component of f is also established.


2021 ◽  
pp. 4019-4031
Author(s):  
Emad Bakr Al-Zangana ◽  
Elaf Abdul Satar Shehab

The aim of the paper is to compute projective maximum distance separable codes, -MDS of two and three dimensions with certain lengths and Hamming weight distribution from the arcs in the projective line and plane over the finite field of order twenty-five. Also, the linear codes generated by an incidence matrix of points and lines of  were studied over different finite fields.  


Author(s):  
Ana-Maria Brecan ◽  
Tim Kirschner ◽  
Martin Schwald

AbstractA family of irreducible holomorphic symplectic (ihs) manifolds over the complex projective line has unobstructed deformations if its period map is an embedding. This applies in particular to twistor spaces of ihs manifolds. Moreover, a family of ihs manifolds over a subspace of the period domain extends to a universal family over an open neighborhood in the period domain.


2021 ◽  
pp. 1979-1985
Author(s):  
Emad Bakr Abdulkareem

This research aims to give a splitting structure of the projective line over the finite field of order twenty-seven that can be found depending on the factors of the line order. Also, the line was partitioned by orbits using the companion matrix. Finally, we showed the number of projectively inequivalent -arcs on the conic  through the standard frame of the plane PG(1,27)


Author(s):  
Michael Lönne

AbstractWe give finite presentations for the fundamental group of moduli spaces due to Miranda of smooth Weierstrass curves over $${\mathbf {P}}^1$$ P 1 which extend the classical result for elliptic curves to the relative situation over the projective line. We thus get natural generalisations of $$SL_2{{\mathbb {Z}}}$$ S L 2 Z presented in terms of $$\Bigg (\begin{array}{ll} 1&{}1\\ 0&{}1\end{array} \Bigg )$$ ( 1 1 0 1 ) , $$\Bigg (\begin{array}{ll} 1&{}0\\ {-1}&{}1\end{array} \Bigg )$$ ( 1 0 - 1 1 ) on one hand and the first examples of fundamental groups of moduli stacks of elliptic surfaces on the other.Our approach exploits the natural $${\mathbb {Z}}_2$$ Z 2 -action on Weierstrass curves and the identification of $${\mathbb {Z}}_2$$ Z 2 -fixed loci with smooth hypersurfaces in an appropriate linear system on a projective line bundle over $${{\mathbf {P}}}^1$$ P 1 . The fundamental group of the corresponding discriminant complement can be presented in terms of finitely many generators and relations using methods in the Zariski tradition.


2021 ◽  
Vol 344 (6) ◽  
pp. 112359
Author(s):  
Giovanni Zini ◽  
Ferdinando Zullo

2021 ◽  
Vol 1879 (3) ◽  
pp. 032028
Author(s):  
Najm Abdulzahra Makhrib ◽  
Al-Seraji ◽  
Fatima Ahmed Musa
Keyword(s):  

Author(s):  
Yizhen Zhao

Abstract By generalizing the Landau–Ginzburg/Calabi–Yau correspondence for hypersurfaces, we can relate a Calabi–Yau complete intersection to a hybrid Landau–Ginzburg model: a family of isolated singularities fibered over a projective line. In recent years Fan, Jarvis, and Ruan have defined quantum invariants for singularities of this type, and Clader and Clader–Ross have provided an equivalence between these invariants and Gromov–Witten invariants of complete intersections, in this way quantum cohomology yields an identification of the cohomology groups of the Calabi–Yau and of the hybrid Landau–Ginzburg model. It is not clear how to relate this to the known isomorphism descending from derived equivalences (due to Segal and Shipman, and Orlov and Isik). We answer this question for Calabi–Yau complete intersections of two cubics.


Sign in / Sign up

Export Citation Format

Share Document