scholarly journals Generic Dynamical Properties of Connections on Vector Bundles

Author(s):  
Mihajlo Cekić ◽  
Thibault Lefeuvre

Abstract Given a smooth Hermitian vector bundle $\mathcal{E}$ over a closed Riemannian manifold $(M,g)$, we study generic properties of unitary connections $\nabla ^{\mathcal{E}}$ on the vector bundle $\mathcal{E}$. First of all, we show that twisted conformal Killing tensors (CKTs) are generically trivial when $\dim (M) \geq 3$, answering an open question of Guillarmou–Paternain–Salo–Uhlmann [ 14]. In negative curvature, it is known that the existence of twisted CKTs is the only obstruction to solving exactly the twisted cohomological equations, which may appear in various geometric problems such as the study of transparent connections. The main result of this paper says that these equations can be generically solved. As a by-product, we also obtain that the induced connection $\nabla ^{\textrm{End}({\operatorname{{\mathcal{E}}}})}$ on the endomorphism bundle $\textrm{End}({\operatorname{{\mathcal{E}}}})$ has generically trivial CKTs as long as $(M,g)$ has no nontrivial CKTs on its trivial line bundle. Eventually, we show that, under the additional assumption that $(M,g)$ is Anosov (i.e., the geodesic flow is Anosov on the unit tangent bundle), the connections are generically opaque, namely that generically there are no non-trivial subbundles of $\mathcal{E}$ that are preserved by parallel transport along geodesics. The proofs rely on the introduction of a new microlocal property for (pseudo)differential operators called operators of uniform divergence type, and on perturbative arguments from spectral theory (especially on the theory of Pollicott–Ruelle resonances in the Anosov case).

Author(s):  
SYLVIE PAYCHA

This paper, based on results obtained in recent years with various coauthors,1–3,13,53 presents a proposal to extend some classical geometric concepts to a class of infinite-dimensional manifolds such as current groups and to a class of infinite-dimensional bundles including the ones arising in the family index theorem. The basic idea is to extend the notion of trace underlying many geometric concepts using renormalized traces which are linear functionals on pseudo-differential operators. The definition of "renormalized traces" involves extra data on the manifolds or vector bundles, namely a weight given by a field of elliptic operators which becomes part of the geometric data, leading to the notion of weighted manifold and weighted vector bundle. This weight is a source of anomaly arising typically as a Wodzicki residue of some pseudo-differential operator. We investigate the anomalies that arise when trying to extend to the infinite-dimensional setting classical results of finite-dimensional geometry such as a Weitzenböck formula, Chern–Weil invariants or the relation between the first Chern form on a complex vector bundle and the curvature on the associated determinant bundle. When comparable, we relate our approach to the one adopted for similar problems in noncommutative geometry.


1966 ◽  
Vol 27 (2) ◽  
pp. 419-427
Author(s):  
Masatake Kuranishi

Let E and E′ be C∞ vector bundles over a C∞ manifold M. Denote by Γ(E) (resp. by Γ(E′) the vector space of C∞ cross-sections of E (resp. of E′) over M. Take a linear differential operator of the first order D: Γ(E) → Γ(E′) induced by a vector bundle mapping σ(D): jl(E) ′ E′, where Jk(E) denotes the vector bundle of k-jets of cross-sections of E.


2003 ◽  
Vol 2003 (64) ◽  
pp. 4041-4056
Author(s):  
Indranil Biswas

We consider filtered holomorphic vector bundles on a compact Riemann surfaceXequipped with a holomorphic connection satisfying a certain transversality condition with respect to the filtration. IfQis a stable vector bundle of rankrand degree(1−genus(X))nr, then any holomorphic connection on the jet bundleJn(Q)satisfies this transversality condition for the natural filtration ofJn(Q)defined by projections to lower-order jets. The vector bundleJn(Q)admits holomorphic connection. The main result is the construction of a bijective correspondence between the space of all equivalence classes of holomorphic vector bundles onXwith a filtration of lengthntogether with a holomorphic connection satisfying the transversality condition and the space of all isomorphism classes of holomorphic differential operators of ordernwhose symbol is the identity map.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 65
Author(s):  
Benjamin Akers ◽  
Tony Liu ◽  
Jonah Reeger

A radial basis function-finite differencing (RBF-FD) scheme was applied to the initial value problem of the Benjamin–Ono equation. The Benjamin–Ono equation has traveling wave solutions with algebraic decay and a nonlocal pseudo-differential operator, the Hilbert transform. When posed on R, the former makes Fourier collocation a poor discretization choice; the latter is challenging for any local method. We develop an RBF-FD approximation of the Hilbert transform, and discuss the challenges of implementing this and other pseudo-differential operators on unstructured grids. Numerical examples, simulation costs, convergence rates, and generalizations of this method are all discussed.


2020 ◽  
Vol 32 (4) ◽  
pp. 919-936 ◽  
Author(s):  
Jiao Chen ◽  
Wei Ding ◽  
Guozhen Lu

AbstractAfter the celebrated work of L. Hörmander on the one-parameter pseudo-differential operators, the applications of pseudo-differential operators have played an important role in partial differential equations, geometric analysis, harmonic analysis, theory of several complex variables and other branches of modern analysis. For instance, they are used to construct parametrices and establish the regularity of solutions to PDEs such as the {\overline{\partial}} problem. The study of Fourier multipliers, pseudo-differential operators and Fourier integral operators has stimulated further such applications. It is well known that the one-parameter pseudo-differential operators are {L^{p}({\mathbb{R}^{n}})} bounded for {1<p<\infty}, but only bounded on local Hardy spaces {h^{p}({\mathbb{R}^{n}})} introduced by Goldberg in [D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 1979, 1, 27–42] for {0<p\leq 1}. Though much work has been done on the {L^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} boundedness for {1<p<\infty} and Hardy {H^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} boundedness for {0<p\leq 1} for multi-parameter Fourier multipliers and singular integral operators, not much has been done yet for the boundedness of multi-parameter pseudo-differential operators in the range of {0<p\leq 1}. The main purpose of this paper is to establish the boundedness of multi-parameter pseudo-differential operators on multi-parameter local Hardy spaces {h^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} for {0<p\leq 1} recently introduced by Ding, Lu and Zhu in [W. Ding, G. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear Anal. 184 2019, 352–380].


2021 ◽  
Vol 71 (1) ◽  
pp. 199-210
Author(s):  
Aniruddha C. Naolekar

Abstract Let 𝓔 k denote the set of diffeomorphism classes of closed connected smooth k-manifolds X with the property that for any oriented vector bundle α over X, the Euler class e(α) = 0. We show that if X ∈ 𝓔2n+1 is orientable, then X is a rational homology sphere and π 1(X) is perfect. We also show that 𝓔8 = ∅ and derive additional cohomlogical restrictions on orientable manifolds in 𝓔 k .


Sign in / Sign up

Export Citation Format

Share Document