scholarly journals The Koopman Representation and Positive Rokhlin Entropy

Author(s):  
Brandon Seward

Abstract In this paper, we study connections between positive entropy phenomena and the Koopman representation for actions of general countable groups. Following the line of work initiated by Hayes for sofic entropy, we show in a certain precise manner that all positive entropy must come from portions of the Koopman representation that embed into the left-regular representation. We conclude that for actions having completely positive outer entropy, the Koopman representation must be isomorphic to the countable direct sum of the left-regular representation. This generalizes a theorem of Dooley–Golodets for countable amenable groups. As a final consequence, we observe that actions with completely positive outer entropy must be mixing, and when the group is non-amenable they must be strongly ergodic and have spectral gap.

2010 ◽  
Vol 31 (5) ◽  
pp. 1277-1286 ◽  
Author(s):  
BACHIR BEKKA ◽  
JEAN-ROMAIN HEU

AbstractForn≥1, letHbe the (2n+1)-dimensional real Heisenberg group, and let Λ be a lattice inH. Let Γ be the group of automorphisms of the corresponding nilmanifold Λ∖HandUthe associated unitary representation of Γ onL2(Λ∖H) . Denote byTthe maximal torus factor associated to Λ∖H. Using Weil’s representation (also known as the metaplectic representation), we show that a dense set of matrix coefficients of the restriction ofUto the orthogonal complement ofL2(T) inL2(Λ∖H) belong toℓ4n+2+ε(Γ) for every ε>0 . We give the following application to random walks on Λ∖Hdefined by a probability measureμon Aut (Λ∖H) . Denoting by Γ(μ) the subgroup of Aut (Λ∖H) generated by the support ofμand byU0andV0the restrictions ofUto, respectively, the subspaces ofL2(Λ∖H) andL2(T) with zero mean, we prove the following inequality:whereλis the left regular representation of Γ(μ) onℓ2(Γ(μ)) . In particular, the action of Γ(μ) on Λ∖Hhas a spectral gap if and only if the corresponding action of Γ(μ) onThas a spectral gap.


2005 ◽  
Vol 04 (06) ◽  
pp. 683-706 ◽  
Author(s):  
JEAN LUDWIG ◽  
CARINE MOLITOR-BRAUN

Let Hn be the (2n + 1)-dimensional Heisenberg group. We decompose L2(Hn) as the closure of a direct sum of infinitely many left translation invariant eigenspaces (for certain systems of partial differential equations). The restriction of the left regular representation to each one of these eigenspaces disintegrates into a direct integral of unitary irreducible representations, such that each infinite dimensional unitary irreducible representation appears with multiplicity 0 or 1 in this disintegration.


2016 ◽  
Vol 17 (2) ◽  
pp. 241-275 ◽  
Author(s):  
Ben Hayes

We deduce properties of the Koopman representation of a positive entropy probability measure-preserving action of a countable, discrete, sofic group. Our main result may be regarded as a ‘representation-theoretic’ version of Sinaǐ’s factor theorem. We show that probability measure-preserving actions with completely positive entropy of an infinite sofic group must be mixing and, if the group is nonamenable, have spectral gap. This implies that if$\unicode[STIX]{x1D6E4}$is a nonamenable group and$\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$is a probability measure-preserving action which is not strongly ergodic, then no action orbit equivalent to$\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$has completely positive entropy. Crucial to these results is a formula for entropy in the presence of a Polish, but a priori noncompact, model.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


Author(s):  
PIOTR ŚNIADY

We study the asymptotics of the reducible representations of the wreath products G≀Sq = Gq ⋊ Sq for large q, where G is a fixed finite group and Sq is the symmetric group in q elements; in particular for G = ℤ/2ℤ we recover the hyperoctahedral groups. We decompose such a reducible representation of G≀Sq as a sum of irreducible components (or, equivalently, as a collection of tuples of Young diagrams) and we ask what is the character of a randomly chosen component (or, what are the shapes of Young diagrams in a randomly chosen tuple). Our main result is that for a large class of representations, the fluctuations of characters (and fluctuations of the shape of the Young diagrams) are asymptotically Gaussian. The considered class consists of the representations for which the characters asymptotically almost factorize and it includes, among others, the left regular representation therefore we prove the analogue of Kerov's central limit theorem for wreath products.


2008 ◽  
Vol 28 (1) ◽  
pp. 87-124 ◽  
Author(s):  
A. H. DOOLEY ◽  
V. YA. GOLODETS ◽  
D. J. RUDOLPH ◽  
S. D. SINEL’SHCHIKOV

AbstractA new approach to actions of countable amenable groups with completely positive entropy (cpe), allowing one to answer some basic questions in this field, was recently developed. The question of the existence of cpe actions which are not Bernoulli was raised. In this paper, we prove that every countable amenable groupG, which contains an element of infinite order, has non-Bernoulli cpe actions. In fact we can produce, for any$h \in (0, \infty ]$, an uncountable family of cpe actions of entropyh, which are pairwise automorphically non-isomorphic. These actions are given by a construction which we call co-induction. This construction is related to, but different from the standard induced action. We study the entropic properties of co-induction, proving that ifαGis co-induced from an actionαΓof a subgroup Γ, thenh(αG)=h(αΓ). We also prove that ifαΓis a non-Bernoulli cpe action of Γ, thenαGis also non-Bernoulli and cpe. Hence the problem of finding an uncountable family of pairwise non-isomorphic cpe actions of the same entropy is reduced to one of finding an uncountable family of non-Bernoulli cpe actions of$\mathbb Z$, which pairwise satisfy a property we call ‘uniform somewhat disjointness’. We construct such a family using refinements of the classical cutting and stacking methods.


1978 ◽  
Vol 21 (3) ◽  
pp. 325-328 ◽  
Author(s):  
John Phillips

The purpose of this note is to continue the author's study of the automorphisms of certain factors of type II1 Namely, those factors arising from the left regular representation of a free nonabelian group. Our main result shows that the outer conjugacy classes of automorphisms of such a factor are not countably separated. This had previously been shown only when the number of free generators was assumed to be infinite.


Sign in / Sign up

Export Citation Format

Share Document