sofic entropy
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Brandon Seward

Abstract In this paper, we study connections between positive entropy phenomena and the Koopman representation for actions of general countable groups. Following the line of work initiated by Hayes for sofic entropy, we show in a certain precise manner that all positive entropy must come from portions of the Koopman representation that embed into the left-regular representation. We conclude that for actions having completely positive outer entropy, the Koopman representation must be isomorphic to the countable direct sum of the left-regular representation. This generalizes a theorem of Dooley–Golodets for countable amenable groups. As a final consequence, we observe that actions with completely positive outer entropy must be mixing, and when the group is non-amenable they must be strongly ergodic and have spectral gap.


2020 ◽  
pp. 1-37 ◽  
Author(s):  
ANDREI ALPEEV ◽  
BRANDON SEWARD

Abstract We continue the study of Rokhlin entropy, an isomorphism invariant for probability-measure-preserving (p.m.p.) actions of countablegroups introduced in Part I [B. Seward. Krieger’s finite generator theorem for actions of countable groups I. Invent. Math. 215(1) (2019), 265–310]. In this paper we prove a non-ergodic finite generator theorem and use it to establish sub-additivity and semicontinuity properties of Rokhlin entropy. We also obtain formulas for Rokhlin entropy in terms of ergodic decompositions and inverse limits. Finally, we clarify the relationship between Rokhlin entropy, sofic entropy, and classical Kolmogorov–Sinai entropy. In particular, using Rokhlin entropy we give a new proof of the fact that ergodic actions with positive sofic entropy have finite stabilizers.


2019 ◽  
Vol 138 (2) ◽  
pp. 597-612
Author(s):  
Tim Austin ◽  
Peter Burton

2019 ◽  
Vol 40 (10) ◽  
pp. 2593-2680 ◽  
Author(s):  
LEWIS BOWEN

Kolmogorov–Sinai entropy is an invariant of measure-preserving actions of the group of integers that is central to classification theory. There are two recently developed invariants, sofic entropy and Rokhlin entropy, that generalize classical entropy to actions of countable groups. These new theories have counterintuitive properties such as factor maps that increase entropy. This survey article focusses on examples, many of which have not appeared before, that highlight the differences and similarities with classical theory.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Tim Austin

AbstractBowen’s notion of sofic entropy is a powerful invariant for classifying probability-preserving actions of sofic groups. It can be defined in terms of the covering numbers of certain metric spaces associated to such an action, the ‘model spaces’. The metric geometry of these model spaces can exhibit various interesting features, some of which provide other invariants of the action. This paper explores an approximate connectedness property of the model spaces, and uses it give a new proof that certain groups admit factors of Bernoulli shifts which are not Bernoulli. This was originally proved by Popa. Our proof covers fewer examples than his, but provides additional information about this phenomenon.


Entropy ◽  
2016 ◽  
Vol 18 (7) ◽  
pp. 263 ◽  
Author(s):  
Tom Meyerovitch
Keyword(s):  

2016 ◽  
Vol 37 (7) ◽  
pp. 2187-2222 ◽  
Author(s):  
BEN HAYES

Associated to any orthogonal representation of a countable discrete group, is a probability measure-preserving action called the Gaussian action. Using the Polish model formalism we developed before, we compute the entropy (in the sense of Bowen [J. Amer. Math. Soc.23(2010) 217–245], Kerr and Li [Invent. Math.186(2011) 501–558]) of Gaussian actions when the group is sofic. Computation of entropy for Gaussian actions has only been done when the acting group is abelian and thus our results are new, even in the amenable case. Fundamental to our approach are methods of non-commutative harmonic analysis and$C^{\ast }$-algebras which replace the Fourier analysis used in the abelian case.


Sign in / Sign up

Export Citation Format

Share Document