Global Smooth Solutions to the 2-D Nonhomogeneous Navier–Stokes Equations

Author(s):  
Ping Zhang
Analysis ◽  
2015 ◽  
Vol 35 (3) ◽  
Author(s):  
Isabelle Gallagher

AbstractIn these notes we present some results concerning the existence of global smooth solutions to the three-dimensional Navier–Stokes equations set in the whole space. We are particularly interested in the stability of the set of initial data giving rise to a global smooth solution.


SeMA Journal ◽  
2021 ◽  
Author(s):  
Alberto Enciso ◽  
Daniel Peralta-Salas

AbstractWe review recent rigorous results on the phenomenon of vortex reconnection in classical and quantum fluids. In the context of the Navier–Stokes equations in $$\mathbb {T}^3$$ T 3 we show the existence of global smooth solutions that exhibit creation and destruction of vortex lines of arbitrarily complicated topologies. Concerning quantum fluids, we prove that for any initial and final configurations of quantum vortices, and any way of transforming one into the other, there is an initial condition whose associated solution to the Gross–Pitaevskii equation realizes this specific vortex reconnection scenario. Key to prove these results is an inverse localization principle for Beltrami fields and a global approximation theorem for the linear Schrödinger equation.


Sign in / Sign up

Export Citation Format

Share Document