scholarly journals On Weyl’s Embedding Problem in Riemannian Manifolds

2018 ◽  
Vol 2020 (11) ◽  
pp. 3229-3259 ◽  
Author(s):  
Siyuan Lu

Abstract We consider a priori estimates of Weyl’s embedding problem of $(\mathbb{S}^2, g)$ in general three-dimensional Riemannian manifold $(N^3, \bar g)$. We establish interior $C^2$ estimate under natural geometric assumption. Together with a recent work by Li and Wang [18], we obtain an isometric embedding of $(\mathbb{S}^2,g)$ in Riemannian manifold. In addition, we reprove Weyl’s embedding theorem in space form under the condition that $g\in C^2$ with $D^2g$ Dini continuous.




2021 ◽  
pp. 2150039
Author(s):  
Xiangao Liu ◽  
Zixuan Liu ◽  
Kui Wang

Motivated by Giaquinta and Hildebrandt’s regularity result for harmonic mappings [M. Giaquinta and S. Hildebrandt, A priori estimates for harmonic mappings, J. Reine Angew. Math. 1982(336) (1982) 124–164, Theorems 3 and 4], we show a [Formula: see text]-regularity result of the harmonic flow between two Riemannian manifolds when the image is in a regular geodesic ball. The proof is based on De Giorgi–Moser’s iteration and Schauder estimate.



Analysis ◽  
2007 ◽  
Vol 27 (4) ◽  
Author(s):  
Michael Pingen

SummaryWe give a new proof of a well known regularity result for harmonic mappings between Riemannian manifolds due to Giaquinta and Hildebrandt [3]. The proof uses a modification of a method due to L. Caffarelli [2] to show interior and boundary Hölder-continuity of harmonic mappings, whose images lie in a regular ball. In addition a priori estimates are established. We remark here that our proof completely avoids the use of Green´s functions.



2020 ◽  
Vol 57 (1) ◽  
pp. 68-90 ◽  
Author(s):  
Tahir S. Gadjiev ◽  
Vagif S. Guliyev ◽  
Konul G. Suleymanova

Abstract In this paper, we obtain generalized weighted Sobolev-Morrey estimates with weights from the Muckenhoupt class Ap by establishing boundedness of several important operators in harmonic analysis such as Hardy-Littlewood operators and Calderon-Zygmund singular integral operators in generalized weighted Morrey spaces. As a consequence, a priori estimates for the weak solutions Dirichlet boundary problem uniformly elliptic equations of higher order in generalized weighted Sobolev-Morrey spaces in a smooth bounded domain Ω ⊂ ℝn are obtained.



Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Rosenau-Korteweg-de Vries equation describes the wave-wave and wave-wall interactions. In this paper, we prove that, as the diffusion parameter is near zero, it coincides with the Korteweg-de Vries equation. The proof relies on deriving suitable a priori estimates together with an application of the Aubin-Lions Lemma.



2021 ◽  
Vol 183 (1) ◽  
Author(s):  
R. Alonso ◽  
V. Bagland ◽  
L. Desvillettes ◽  
B. Lods

AbstractIn this paper, we present new estimates for the entropy dissipation of the Landau–Fermi–Dirac equation (with hard or moderately soft potentials) in terms of a weighted relative Fisher information adapted to this equation. Such estimates are used for studying the large time behaviour of the equation, as well as for providing new a priori estimates (in the soft potential case). An important feature of such estimates is that they are uniform with respect to the quantum parameter. Consequently, the same estimations are recovered for the classical limit, that is the Landau equation.



2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Said Mesloub ◽  
Hassan Eltayeb Gadain

Abstract A priori bounds constitute a crucial and powerful tool in the investigation of initial boundary value problems for linear and nonlinear fractional and integer order differential equations in bounded domains. We present herein a collection of a priori estimates of the solution for an initial boundary value problem for a singular fractional evolution equation (generalized time-fractional wave equation) with mass absorption. The Riemann–Liouville derivative is employed. Results of uniqueness and dependence of the solution upon the data were obtained in two cases, the damped and the undamped case. The uniqueness and continuous dependence (stability of solution) of the solution follows from the obtained a priori estimates in fractional Sobolev spaces. These spaces give what are called weak solutions to our partial differential equations (they are based on the notion of the weak derivatives). The method of energy inequalities is used to obtain different a priori estimates.



Sign in / Sign up

Export Citation Format

Share Document