scholarly journals Invariant States on Noncommutative Tori

Author(s):  
Federico Bambozzi ◽  
Simone Murro ◽  
Nicola Pinamonti

Abstract For any number $h$ such that $\hbar :=h/2\pi $ is irrational and any skew-symmetric, non-degenerate bilinear form $\sigma :{{\mathbb{Z}}}^{2g}\times{{\mathbb{Z}}}^{2g} \to{{\mathbb{Z}}}$, let be ${{\mathcal{A}}}^h_{g,\sigma }$ be the twisted group *-algebra ${{\mathbb{C}}}[{{\mathbb{Z}}}^{2g}]$ and consider the ergodic group of *-automorphisms of ${{\mathcal{A}}}^h_{g,\sigma }$ induced by the action of the symplectic group $\textrm{Sp} \,({{\mathbb{Z}}}^{2g},\sigma )$. We show that the only $\textrm{Sp} \,({{\mathbb{Z}}}^{2g},\sigma )$-invariant state on ${{\mathcal{A}}}^h_{g,\sigma }$ is the trace state $\tau $.

1972 ◽  
Vol 18 (2) ◽  
pp. 149-158 ◽  
Author(s):  
J. D. P. Meldrum ◽  
D. A. R. Wallace

Let G be a group and let K be a field. The twisted group algebra Kt(G) of G over K is defined as follows: let G have elements a, b, c, … and let Kt(G) be the vector space over K with basis elements ; let α: G ×G → K be a 2-cocycle and define a multiplication on Kt(G) byextending this by linearity to Kt(G) yields an associative algebra. We are interested in information concerning the Jacobson radical of Kt(G), denoted by JKt(G).


1995 ◽  
Vol 47 (2) ◽  
pp. 274-289
Author(s):  
Victor Bovdi

AbstractLet U(KλG) be the group of units of the infinite twisted group algebra KλG over a field K. We describe the FC-centre ΔU of U(KλG) and give a characterization of the groups G and fields K for which U(KλG) = ΔU. In the case of group algebras we obtain the Cliff-Sehgal-Zassenhaus theorem.


1991 ◽  
Vol 43 (3) ◽  
pp. 540-558 ◽  
Author(s):  
Peter Nelis

The Schur or projective Schur group of a field consists of the classes of central simple algebras which occur in the decomposition of a group algebra or a twisted group algebra. For number fields, the projective Schur group has been determined in [8], whereas the Schur group is extensively studied in [25]. Recently, some authors have generalized these concepts to commutative rings. One then studies the classes of Azumaya algebras which are epimorphic images of a group ring or a twisted group ring. Though several properties of the Schur or projective Schur group defined in this way have been obtained, they remain rather obscure objects.


1964 ◽  
Vol 4 (2) ◽  
pp. 152-173 ◽  
Author(s):  
S. B. Conlon

Let be a finite group, a field. A twisted group algebra A() on over is an associative algebra whose elements are the formal linear combinations and in which the product (A)(B) is a non-zero multiple of (AB), where AB is the group product of A, B ∈: . One gets the ordinary group algebra () by taking each fA, B ≠ 1.


1979 ◽  
Vol 20 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Hans Opolka

Let G be a finite group with neutral element e which operates trivially on the multiplicative group R* of a commutative ring with identity 1. Let H2(G, R*) = Z2(G, R*)/B2(G, R*) denote the second cohomology group of G with respect to the trivial G-module R*. With every factor system (2-cocycle) f ∈ Z2(G, R*) we associate the so called (central) twisted group algebra (R, G, f) of G over R (see [4, Chapter V, 23.7] or [13, §4] for a definition). If f is cohomologous to f', then the R-algebras (R, G, f) and (R, G, f′) are isomorphic. Hence, up to R-algebra isomorphism, (R, G, f) is determined by the cohomology class f∈H2(G, R*) determined by f. If R = k is a field of characteristic not dividing the order |G| of G, then a computation of the discriminant of (k, G, f) shows that (k, G, f) is semisimple (see [13, 4.2]).


Sign in / Sign up

Export Citation Format

Share Document