In vitro activity of olorofim (F901318) against clinical isolates of cryptic species of Aspergillus by EUCAST and CLSI methodologies

2019 ◽  
Vol 74 (6) ◽  
pp. 1586-1590 ◽  
Author(s):  
Olga Rivero-Menendez ◽  
Manuel Cuenca-Estrella ◽  
Ana Alastruey-Izquierdo
2021 ◽  
Vol 7 (3) ◽  
pp. 232
Author(s):  
Olga Rivero-Menendez ◽  
Juan Carlos Soto-Debran ◽  
Manuel Cuenca-Estrella ◽  
Ana Alastruey-Izquierdo

Ibrexafungerp is a new orally-available 1,3-β-D-glucan synthesis inhibitor in clinical development. Its in vitro activity and that of amphotericin B, voriconazole, and micafungin were evaluated against a collection of 168 clinical isolates of Aspergillus spp., including azole–susceptible and azole–resistant (Cyp51A mutants) Aspergillus fumigatus sensu stricto (s.s.) and cryptic species of Aspergillus belonging to six species complexes showing different patterns of antifungal resistance, using EUCAST and CLSI antifungal susceptibility testing reference methods. Ibrexafungerp displayed low geometric means of minimal effective concentrations (MECs) against A. fumigatus s.s. strains, both azole susceptible (0.040 mg/L by EUCAST and CLSI versus 1.231 mg/L and 0.660 mg/L for voriconazole, respectively) and azole resistant (0.092 mg/L and 0.056 mg/L, EUCAST and CLSI, while those for voriconazole were 2.144 mg/L and 2.000 mg/L). Ibrexafungerp was active against most of the cryptic species of Aspergillus tested, yielding MEC values only comparable to those of micafungin. Nevertheless, this new compound exhibited a moderate activity against A. ustus complex species, MECs ≥ 0.5 mg/L against Aspergillus insuetus and Aspergillus keveii strains, and was inactive against the Aspergillus alliaceus isolates tested (MEC90s ≥ 16 mg/L). All in all, ibrexafungerp shows encouraging in vitro results against cryptic species of Aspergillus and azole–susceptible and azole resistant strains of A. fumigatus, some of which are difficult to treat using the available therapeutic options.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S655-S655
Author(s):  
Daniel Navas ◽  
Angela Charles ◽  
Amy Carr ◽  
Jose Alexander

Abstract Background The activity of imipenem/relebactam (I/R), ceftazidime/avibactam (CZA) and cefiderocol (FDC) were evaluated against clinical isolates of multidrug resistant (MDR) strains of P. aeruginosa which was resistant to ceftolozane/tazobactam (C/T). The recent increase of MDR P. aeruginosa strains isolated from clinical samples has prompted research and development of new antimicrobials that can withstand its multiple resistance mechanisms. C/T is an effective option for treatment of MDR P. aeruginosa in our facility with only 10% of resistance in MDR strains, but the emergence of resistance may occur due to the presence of a carbapenemase gene or an ampC mutation. Methods Antimicrobial susceptibility testing for C/T Etest® (bioMérieux, Inc.) were performed on all MDR strains initially screened by the VITEK2® (bioMérieux, Inc.). 10% (n=20) of all MDR isolates were resistant to C/T by the CLSI 2019 breakpoints. These resistant isolates were tested for presence of a carbapenemase gene using the GeneXpert CARBA-R (Cepheid®) PCR and against CZA Etest® (bioMérieux, Inc.) I/R gradient strips (Liofilchem®) and FDC broth microdilution (Thermo Scientific™ Sensititre™). Results A total of 20 clinical isolates of MDR P. aeruginosa resistant to C/T were tested following standardized CLSI protocols and techniques. All 20 isolates were screened for the presence of a carbapenemase gene (blaVIM, blaNDM, blaKPC, blaOXA-48, blaIMP). A blaVIM gene was detected in 6 (30%) out of 20 isolates. FDC demonstrated the greatest activity with 85% (n=17) of susceptible isolates (CLSI MIC <4µg/dL). CZA (CLSI MIC <8µg/dL) and I/R (FDA MIC <2µg/dL) showed 15% (n=3) and 10% (n=2) of susceptible isolates respectively. FDC was active against all 6 blaVIM isolates, where all 6 strains were resistant to CZA and I/R as expected. 3 isolates tested non-susceptible against FDC; additional characterization was not performed at this time. Conclusion Based on these results, FDC demonstrated the greatest in-vitro activity against C/T resistant strains of MDR P. aeruginosa. FDC also demonstrated activity against all 6 MDR P. aeruginosa carrying blaVIM gene. FDC is a strong option to consider on MDR P. aeruginosa strains based on a resistance testing algorithm and a cost/effective protocol. Disclosures All Authors: No reported disclosures


Mycoses ◽  
2021 ◽  
Author(s):  
Hamid Badali ◽  
Connie Cañete‐Gibas ◽  
Hoja Patterson ◽  
Carmita Sanders ◽  
Barbara Mermella ◽  
...  

2001 ◽  
Vol 39 (11) ◽  
pp. 4208-4209 ◽  
Author(s):  
F. Barchiesi ◽  
D. Arzeni ◽  
V. Camiletti ◽  
O. Simonetti ◽  
A. Cellini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document