gram positive
Recently Published Documents


TOTAL DOCUMENTS

9216
(FIVE YEARS 2291)

H-INDEX

168
(FIVE YEARS 19)

2023 ◽  
Vol 83 ◽  
Author(s):  
S. Mumtaz ◽  
S. Mumtaz ◽  
S. Ali ◽  
H. M. Tahir ◽  
S. A. R. Kazmi ◽  
...  

Abstract Now a day’s multidrug resistance phenomenon has become the main cause for concern and there has been an inadequate achievement in the development of novel antibiotics to treat the bacterial infections. Therefore, there is an unmet need to search for novel adjuvant. Vitamin C is one such promising adjuvant. The present study was aimed to elucidate the antibacterial effect of vitamin C at various temperatures (4°C, 37°C and 50°C) and pH (3, 8, and 11), against Gram-positive and Gram-negative bacteria at various concentrations (5-20 mg/ml) through agar well diffusion method. Growth inhibition of all bacterial strains by vitamin C was concentration-dependent. Vitamin C significantly inhibited the growth of Gram-positive bacteria: Bacillus licheniformis (25.3 ± 0.9 mm), Staphylococcus aureus (22.0 ± 0.6 mm), Bacillus subtilis (19.3 ± 0.3 mm) and Gram-negative bacteria: Proteus mirabilis (27.67 ± 0.882 mm), Klebsiella pneumoniae (21.33±0.9 mm), Pseudomonas aeruginosa (18.0 ± 1.5 mm) and Escherichia coli (18.3 ± 0.3 mm). The stability of vitamin C was observed at various pH values and various temperatures. Vitamin C showed significant antibacterial activity at acidic pH against all bacterial strains. Vitamin C remained the stable at different temperatures. It was concluded that vitamin C is an effective and safe antibacterial agent that can be used in the future as an adjunct treatment option to combat infections in humans.


Author(s):  
Anand Kumar ◽  
Yosra A. Helmy ◽  
Zachary Fritts ◽  
Anastasia Vlasova ◽  
Linda J. Saif ◽  
...  
Keyword(s):  

Author(s):  
Ricardo Romero-Arguelles ◽  
César Iván Romo-Sáenz ◽  
Karla Morán-Santibáñez ◽  
Patricia Tamez-Guerra ◽  
Ramiro Quintanilla-Licea ◽  
...  

Plant-associated microorganisms represent a potential source of new antitumor compounds. The aim of the present study was to isolate endophytic and rhizosphere Gram-positive bacteria from Ibervillea sonorae and produce extracts with antitumor activity. Methanol and ethyl acetate extracts were obtained from 28 d bacterial fermentation, after which murine L5178Y-R lymphoma cells growth inhibition was evaluated at concentrations ranging from 15.62 µg/mL to 500 µg/mL by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide reduction colorimetric assay. IC50 and the selectivity index (SI) were calculated and compared with healthy control human peripheral blood mononuclear cells (PBMC). Identification of the isolated strains was performed using the 16S ribosomal gene and by MALDI-TOF MS mass spectrometry. The endophytic and rhizosphere bacterial extracts from strains ISE-B22, ISE-B26, ISE-B27, ISS-A01, ISS-A06, and ISS-A16 showed significant (p < 0.05) L5178Y-R cell growth inhibition, compared with an untreated control. The rhizosphere Micromonospora echinospora isolate ISS-A16 showed the highest (90.48%) percentage of lymphoma cells growth inhibition and SI (19.1) for PBMC, whereas the Bacillus subtilis ISE-B26 isolate caused significant (p < 0.01) growth inhibition (84.32%) and a SI of 5.2. Taken together, results of the present study evidenced antitumor effects by I. sonorae endophytic and rhizosphere bacteria culture extracts. Further research will involve the elucidation of the compounds that exert the antitumor activity and their evaluation in pre-clinical studies.


2022 ◽  
pp. 089686082110641
Author(s):  
Ying Ma ◽  
Yingzhou Geng ◽  
Li Jin ◽  
Xiaopei Wang ◽  
Changna Liang ◽  
...  

Background: The role of monitoring serum vancomycin levels during treatment of peritoneal dialysis (PD)–associated peritonitis is controversial. Substantial inter-individual variability may result in suboptimal serum levels despite similar dosing of vancomycin. The published predictors of suboptimal serum vancomycin levels remain limited. Methods: Data were retrospectively collected from 541 patients on continuous ambulatory peritoneal dialysis between 1 January 2018 and 31 December 312019. For gram-positive cocci and culture-negative peritonitis, we adopted a vancomycin administration and monitoring protocol. Short-term adverse outcomes of PD-associated peritonitis, including transfer to haemodialysis, death, persistent infection beyond planned therapy duration and relapse, were observed. The association between trough serum vancomycin levels and short-term adverse outcomes was evaluated. Results: Intraperitoneal vancomycin was used in 61 gram-positive cocci or culture-negative peritonitis episodes in 56 patients. Fourteen episodes of short-term adverse outcomes occurred in 12 patients, whose average trough serum vancomycin levels on day 5 of treatment were significantly lower than those who didn’t experience any adverse outcomes (8.4 ± 1.7 vs 12.5 ± 4.3 mg/L, p = 0.003). In gram-positive cocci or culture-negative peritonitis patients, those with higher day 5 trough serum vancomycin levels had a lower risk of short-term adverse outcomes (odds ratio: 0.6, 95% confidence interval: 0.4 to 0.9, p = 0.011). Receiver operating charecteristic curve (ROC) analyses showed that the day 5 trough serum vancomycin levels diagnostic threshold value for short-term adverse outcomes was 10.1 mg/L. After adjustments for gender, exchange volume and residual kidney function (RKF), baseline higher peritoneal transport was associated with a suboptimal (<10.1 mg/L) day 5 serum vancomycin level. Conclusions: Serum vancomycin levels are correlated with short-term adverse outcomes of PD-associated peritonitis, and higher peritoneal solute transport status is associated with suboptimal trough serum vancomycin levels on day 5.


2022 ◽  
Vol 12 (2) ◽  
pp. 710
Author(s):  
Fohad Mabood Husain ◽  
Faizan Abul Qais ◽  
Iqbal Ahmad ◽  
Mohammed Jamal Hakeem ◽  
Mohammad Hassan Baig ◽  
...  

Global emergence and persistence of the multidrug-resistant microbes have created a new problem for management of diseases associated with infections. The development of antimicrobial resistance is mainly due to the sub-judicious and unprescribed used of antimicrobials both in healthcare and the environment. Biofilms are important due to their role in microbial infections and hence are considered a novel target in discovery of new antibacterial or antibiofilm agents. In this article, zinc oxide nanoparticles (ZnO-NPs) were prepared using extract of Plumbago zeylanica. ZnO-NPs were characterized and then their antibiofilm activity was tested against Gram-positive and Gram-negative bacteria. The ZnO-NPs were polydispersed, and the average size was obtained as 24.62 nm. The presence of many functional groups indicated that phytocompounds of P. zeylanica were responsible for the synthesis, capping, and stabilization of ZnO-NPs. Synthesized NPs inhibited the biofilm formation of E. coli, S. aureus, and P. aeruginosa by 62.80%, 71.57%, and 77.69%, respectively. Likewise, concentration-dependent inhibition of the EPS production was recorded in all test bacteria. Microscopic examination of the biofilms revealed that ZnO-NPs reduced the bacterial colonization on solid support and altered the architecture of the biofilms. ZnO-NPs also remarkably eradicated the preformed biofilms of the test bacteria up to 52.69%, 59.79%, and 67.22% recorded for E. coli, S. aureus, P. aeruginosa, respectively. The findings reveal the ability of green synthesized zinc oxide nanoparticles to inhibit, as well as eradicate, the biofilms of Gram-positive and Gram-negative bacteria.


Author(s):  
Rui Yu ◽  
Yindi Xu ◽  
Stefan Schwarz ◽  
Yanhong Shang ◽  
Xuezhen Yuan ◽  
...  

Macrolide and lincosamide resistance due to the presence of erm (T) have posed a challenge for the treatment of Gram-positive pathogens. Because of the low detection rate of erm (T) gene among the S. suis population due to the fitness cost of the erm (T)-carrying plasmid and ICE, the presence of erm (T) in S. suis and its potential transmission to other Gram-positive pathogens will be of important significance.


Author(s):  
Zewen Wen ◽  
Yuxi Zhao ◽  
Zhengyang Gong ◽  
Yuanyuan Tang ◽  
Yanpeng Xiong ◽  
...  

The increasing emergence of infectious diseases associated with multidrug-resistant Gram-positive pathogens has raised the urgent need to develop novel antibiotics. GA (15:1) is a natural product derived from Ginkgo biloba and possesses a wide range of bioactivities, including antimicrobial activity.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
Bruno Casciaro ◽  
Francesca Ghirga ◽  
Floriana Cappiello ◽  
Valeria Vergine ◽  
Maria Rosa Loffredo ◽  
...  

In today’s post-antibiotic era, the search for new antimicrobial compounds is of major importance and nature represents one of the primary sources of bioactive molecules. In this work, through a cheminformatics approach, we clustered an in-house library of natural products and their derivatives based on a combination of fingerprints and substructure search. We identified the prenylated emodine-type anthranoid ferruginin A as a novel antimicrobial compound. We tested its ability to inhibit and kill a panel of Gram-positive and Gram-negative bacteria, and compared its activity with that of two analogues, vismione B and ferruanthrone. Furthermore, the capability of these three anthranoids to disrupt staphylococcal biofilm was investigated, as well as their effect on the viability of human keratinocytes. Ferruginin A showed a potent activity against both the planktonic and biofilm forms of Gram-positive bacteria (i.e., Staphylococcus aureus and S. epidermidis) and had the best therapeutic index compared to vismione B and ferruanthrone. In conclusion, ferruginin A represents a promising scaffold for the further development of valuable antimicrobial agents.


2022 ◽  
Vol 11 (1) ◽  
pp. e40111125141
Author(s):  
Laura Cassol Mohr Celuppi ◽  
Ana Paula Capelezzo ◽  
Leticia Bavaresco Cima ◽  
Rubieli Carla Frezza Zeferino ◽  
Micheli Zanetti ◽  
...  

The development of new antimicrobial polymeric materials is in prominence due to its versatility of applications, especially for the manufacture of active packaging food. Cellulose acetate is an example of polymeric material used to this purpose, due to its characteristics of biodegradability and easy processing, in addition its natural origin and no toxicity. Geranyl acetate is an ester derived from geraniol, which has good antimicrobial properties and good thermal stability, which makes it interesting to be applied as an antimicrobial agent, avoiding the trivial and often problematic metallic nanoparticles and also volatile essential oils. In this work, antibacterial and antifungal cellulose acetate films were obtained through the incorporation of geranyl acetate ester (in concentrations of 0.5 and 1.0% v/v), by using the casting technique. This new material was tested against gram-positive and gram-negative bacteria and fungi. Results showed that it is possible to obtain antibacterial and antifungal cellulose acetate films with the incorporation of geranyl acetate ester, with excellent antibacterial activity against gram-positive and gram-negative bacteria and good antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document