Toxicokinetic Studies and Analytical Toxicology of the New Synthetic Opioids Cyclopentanoyl-Fentanyl and Tetrahydrofuranoyl-Fentanyl

2020 ◽  
Vol 44 (5) ◽  
pp. 449-460 ◽  
Author(s):  
Tanja M Gampfer ◽  
Lea Wagmann ◽  
Matthias J Richter ◽  
Svenja Fischmann ◽  
Folker Westphal ◽  
...  

Abstract The growing number of new synthetic opioids (NSO) on the new psychoactive substances (NPS) market bears new challenges in toxicology. As their toxicodynamics and particularly their toxicokinetics are usually unknown, impact on human health is not yet fully understood. Detection of the 2 NSO cyclopentanoyl-fentanyl (CP-F) and tetrahydrofuranoyl-fentanyl (THF-F) was first reported in 2016. Both were involved in several fatal intoxication cases, but no detailed information about their toxicological characteristics is available so far. The main purpose of this study was therefore to investigate the in vitro toxicokinetics and in vivo analytical toxicology of CP-F and THF-F by means of liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). These studies included metabolic stability, phase I and II metabolism, isozyme mapping, plasma protein binding and detectability in LC-HRMS/MS standard urine screening approaches (SUSA) using rat urine samples. In total, 12 phase I metabolites of CP-F and 13 of THF-F were identified, among them 9 metabolites described for the first time. Overall, N-dealkylations, hydroxylations and dihydroxylations were the main metabolic reactions. The cytochrome P450 (CYP) isozymes mainly involved were CYP2D6 and CYP3A4, leading to elevated drug levels and intoxications in CYP2D6 poor metabolizers. CP-F showed a high plasma protein binding of 99%, which may increase the risk of toxicity by simultaneous intake of other highly bound drugs. Detectability studies showed that neither the parent compounds nor their metabolites were detectable in rat urine using LC-HRMS/MS SUSA. However, a more sophisticated analytical strategy was successfully applied and should be used for analytical confirmation of an intake of CP-F and/or THF-F.

Author(s):  
Lea Wagmann ◽  
Sascha K Manier ◽  
Christina Felske ◽  
Tanja M Gampfer ◽  
Matthias J Richter ◽  
...  

Abstract Flubromazolam is widely known as highly potent designer benzodiazepine (DBZD). Recently, the two flubromazolam-derived new psychoactive substances (NPS) clobromazolam and bromazolam appeared on the drugs of abuse market. Since no information concerning their toxicokinetics in humans is available, the aims of the current study were to elucidate their metabolic profile and to identify the isozymes involved in their phase I and phase II metabolism. In vitro incubations with pooled human liver S9 fraction were performed and analyzed by liquid chromatography coupled to orbitrap-based high-resolution tandem mass spectrometry (LC–HRMS-MS). Biosamples after the ingestion of bromazolam allowed the identification of metabolites in human plasma and urine as well as the determination of bromazolam plasma concentrations by LC–HRMS-MS using the standard addition method. In total, eight clobromazolam metabolites were identified in vitro as well as eight bromazolam metabolites in vitro and in vivo. Predominant metabolic steps were hydroxylation, glucuronidation and combinations thereof. Alpha-hydroxy bromazolam glucuronide and bromazolam N-glucuronide are recommended as screening targets in urine. Bromazolam and its alpha-hydroxy metabolite are recommended if conjugate cleavage is part of the sample preparation procedure. The bromazolam plasma concentrations were determined to be 6 and 29 μg/L, respectively. Several cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) isozymes were shown to catalyze their metabolic transformations. CYP3A4 was involved in the formation of all phase I metabolites of both NPS, while UGT1A4 and UGT2B10 catalyzed their N-glucuronidation. Several UGT isoforms catalyzed the glucuronidation of the hydroxy metabolites. In conclusion, the determined bromazolam plasma concentrations in the low micrograms per liter range underlined the need for sensitive analytical methods and the importance of suitable urine screening procedures including DBZD metabolites as targets. Such an analytical strategy should be also applicable for clobromazolam.


2020 ◽  
pp. 105051
Author(s):  
Cathy Lester ◽  
Nicola J. Hewitt ◽  
Ursula Müller-Vieira ◽  
Manuela Mayer ◽  
Corie Ellison ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document