scholarly journals Gaia parallax of Milky Way globular clusters – A solution of mixture model

2019 ◽  
Vol 489 (3) ◽  
pp. 3093-3101 ◽  
Author(s):  
Zhengyi Shao ◽  
Lu Li

Abstract We have established a mixture model approach to derive the parallax of the Milky Way globular clusters. It avoids the problem of cluster membership determination and provides a completely independent astrometrical solution by purely using the parallax data. This method is validated with simulated clusters of Pancino et al.. We have resolved 120 real globular clusters by the mixture model using parallaxes of the second data release of Gaia . They construct the largest direct parallax sample up to now. In comparison with other direct parallax results based on cluster members, including 75 clusters of Gaia Collaboration, our method presents its accuracy, especially for some particular clusters. A systematic offset of −27.6 ± 1.7 μas, together with a scatter of 22.8 ± 1.3 μas is found in comparison with other indirect parallax measurements. They are consistent with the global value and the variation of the zero-point of current Gaia parallaxes. Distances of several specific nearby globular clusters are discussed while the closest ones can reach high precisions, even taking the systematic error into account.

2020 ◽  
Vol 496 (4) ◽  
pp. 4701-4716 ◽  
Author(s):  
R J Jackson ◽  
R D Jeffries ◽  
N J Wright ◽  
S Randich ◽  
G Sacco ◽  
...  

ABSTRACT The Gaia-ESO Survey (GES) observed many open clusters as part of its programme to spectroscopically characterize the various Milky Way populations. GES spectroscopy and Gaia astrometry from its second data release are used here to assign membership probabilities to targets towards 32 open clusters with ages from 1 to 3800 Myr, based on maximum likelihood modelling of the 3D kinematics of the cluster and field populations. From a parent catalogue of 14 398 individual targets, 5032 stars with uniformly determined 3D velocities, Teff, log g, and chemistry are assigned cluster membership with probability >0.9, and with an average probability of 0.991. The robustness of the membership probabilities is demonstrated using independent membership criteria (lithium and parallax) in two of the youngest clusters. The addition of radial velocities improves membership discrimination over proper motion selection alone, especially in more distant clusters. The kinematically selected nature of the membership lists, independent of photometry and chemistry, makes the catalogue a valuable resource for testing stellar evolutionary models and investigating the time evolution of various parameters.


Sign in / Sign up

Export Citation Format

Share Document