scholarly journals Simple and accurate quantification of dialysis in acute renal failure patients during either urea non-steady state or treatment with irregular or continuous schedules

2004 ◽  
Vol 19 (6) ◽  
pp. 1454-1466 ◽  
Author(s):  
F. G. Casino ◽  
M. R. Marshall
1997 ◽  
Vol 8 (5) ◽  
pp. 804-812
Author(s):  
W R Clark ◽  
B A Mueller ◽  
M A Kraus ◽  
W L Macias

Renal replacement therapy (RRT) requirements for critically ill patients with acute renal failure (ARF) depend on numerous factors, including the degree of hypercatabolism, patient size, and desired level of metabolic control. However, the current practice at many institutions is to prescribe generally similar amounts of RRT to ARF patients essentially without regard for the above factors. In this study, a computer-based model designed to permit individualized RRT prescription to ARF patients was developed. The critical input parameter is the desired level of metabolic control, which is the time-averaged BUN (BUNa) or steady-state BUN (BUNs) for intermittent hemodialysis (IHD) or continuous RRT (CRRT), respectively. The basis for the model was a group of 20 patients who received uninterrupted CRRT for at least 5 days. In these patients, the normalized protein catabolic rate (nPCR) increased linearly (r = 0.974) from 1.55 +/- 0.14 g/kg per day (mean +/- SEM) on day 1 to 1.95 +/- 0.15 g/kg per day on day 6. The daily urea generation rate (G), determined from the above linear relationship, was utilized to produce BUN versus time curves by the direct quantification method for simulated patients of varying dry weights (50 to 100 kg) who received variable CRRT urea clearances (500 to 2000 ml/h). Steady-state BUN versus time profiles for the same simulated patient population treated with IHD regimens (K = 180 ml/min, T = 4 h) of variable frequency were generated by use of a variable-volume, single-pool kinetic model. From these profiles, regression lines of required IHD frequency (per week) versus patient weight for desired BUNa values of 60, 80, and 100 mg/dl were obtained. Regression lines of required CRRT urea K (ml/h) versus patient weight for desired BUNs values of 60, 80, and 100 mg/dl were also generated. For the attainment of intensive IHD metabolic control (BUNa = 60 mg/dl) at steady state, a required treatment frequency of 4.4 dialyses per week is predicted for a 50-kg patient. However, the model predicts that the same degree of metabolic control cannot be achieved even with daily IHD therapy in patients > or = 90 kg. On the other hand, for the attainment of intensive CRRT metabolic control (BUNs = 60 mg/dl), required urea clearance rates of approximately 900 ml/h and 1900 ml/h are predicted for 50- and 100-kg patients, respectively. This model suggests that, for many patients, rigorous azotemia control equivalent to that readily attainable with most CRRT can only be achieved with intensive IHD regimens. Following prospective clinical validation, this methodology may be a useful RRT prescription tool for critically ill ARF patients.


1973 ◽  
Vol 131 (6) ◽  
pp. 911-928 ◽  
Author(s):  
W. Flamenbaum

Sign in / Sign up

Export Citation Format

Share Document