protective effect
Recently Published Documents





2022 ◽  
Vol 47 ◽  
pp. 174-179
Yan Zhao ◽  
Wanrong Yu ◽  
Jiangyun Liu ◽  
Haohao Wang ◽  
Rui Du ◽  

2022 ◽  
Yibin Zeng ◽  
Hongying Zhao ◽  
Tong Zhang ◽  
Chao Zhang ◽  
Yanni He ◽  

Background: Punicalagin (Pun) is one of the main bioactive compounds in pomegranate peel, it possesses many properties, including antioxidant, anti-inflammation, and immunosuppressive activities. The study was aimed to investigate the protective effect and mechanisms of Pun on lipopolysaccharide (LPS) induced acute lung injury (ALI) in mice. Methods and Results: Forty-eight BALB/c male mice were used to establish ALI by intratracheal-instilled 2.4 mg/kg LPS, the mice were randomly divided into model and Pun (10, 20, 40 mg/kg) groups. The other twelve mice were intratracheal-instilled same volume of water as control. After 2 h of receiving LPS, mice were administrated drug through intraperitoneal injection. Lung index, histopathological changes, white blood cells and biomarkers in bronchoalveolar lavage fluid (BALF) were analyzed. The protein expression of total and phosphor p65, IκBα, ERK1/2, JNK and p38 in lung tissue was detected. The result showed that Pun could reduce the lung index and wet/dry weight ratio, improve lung histopathological injury. In addition, Pun decreased the inflammation cells and regulated the biomarkers in BALF. Furthermore, Pun dose-dependently reduced the phosphor protein levels of p65, IκBα, ERK1/2, JNK and p38 in lung tissue, which exhibited that the effect of Pun related to MAPKs pathway. More importantly, there is no toxicity was observed in the acute toxicity study of Pun. Conclusion: Pun improves LPS-induced ALI mainly through its anti-inflammatory properties, which is associated with NF-κB and MAPKs signaling pathways. The study implied that Pun maybe a potent agent against ALI in future clinic.

2022 ◽  
Vol 12 ◽  
Weikang Zhang ◽  
Yuhang Gong ◽  
Xiaohang Zheng ◽  
Jianxin Qiu ◽  
Ting Jiang ◽  

Platelet-derived growth factor-BB (PDGF-BB) is a cytokine involved in tissue repair and tumor progression. It has been found to have expression differences between normal and degenerative intervertebral discs. However, it is not clear whether PDGF-BB has a protective effect on intervertebral disc degeneration (IDD). In this experiment, we treated nucleus pulposus cells (NPCs) with IL-1β to simulate an inflammatory environment and found that the extracellular matrix (ECM) anabolic function of NPCs in an inflammatory state was inhibited. Moreover, the induction of IL-1β also enhanced the expression of NLRP3 and the cleavage of caspase-1 and IL-1β, which activated the pyroptosis of NPCs. In this study, we studied the effect of PDGF-BB on IL-1β-treated NPCs and found that PDGF-BB not only significantly promotes the ECM anabolism of NPCs, but also inhibits the occurrence of pyroptosis and the production of pyroptosis products of NPCs. Consistent with this, when we used imatinib to block the PDGF-BB receptor, the above-mentioned protective effect disappeared. In addition, we found that PDGF-BB can also promote the ECM anabolism of NPCs by regulating the ERK, JNK, PI3K/AKT signaling pathways, but not the P38 signaling pathway. In vivo studies, mice that blocked PDGF-BB receptors showed more severe histological manifestations of intervertebral disc degeneration. In summary, our results indicate that PDGF-BB participates in inhibiting the occurrence and development of IDD by inhibiting pyroptosis and regulating the MAPK signaling pathway.

2022 ◽  
Vol 12 ◽  
Qian Zhang ◽  
Dan Yi ◽  
Changzheng Ji ◽  
Tao Wu ◽  
Manli Wang ◽  

Porcine epidemic diarrhea virus (PEDV) has reemerged as the main pathogen of piglets due to its high mutation feature. Monolaurin (ML) is a natural compound with a wide range of antibacterial and antiviral activities. However, the role of ML in PEDV infection is still unknown. This study aimed to evaluate the effect of ML on the growth performance, intestinal function, virus replication and cytokine response in piglets infected with PEDV, and to reveal the mechanism through proteomics analysis. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 days before PEDV infection. Results showed that although there was no significant effect on the growth performance of piglets, ML administration alleviated the diarrhea caused by PEDV infection. ML administration promoted the recovery of intestinal villi, thereby improving intestinal function. Meanwhile, PEDV replication was significantly inhibited, and PEDV-induced expression of IL-6 and IL-8 were decreased with ML administration. Proteomics analyses showed that 38 proteins were differentially expressed between PEDV and ML+PEDV groups and were significantly enriched in the interferon-related pathways. This suggests ML could promote the restoration of homeostasis by regulating the interferon pathway. Overall, the present study demonstrated ML could confer a protective effect against PEDV infection in piglets and may be developed as a drug or feed additive to prevent and control PEDV disease.

2022 ◽  
Vol 20 (2) ◽  
pp. 365-368
Zirong Pan ◽  
Qiang Cheng ◽  
Heyan Chen ◽  
Longhai Lin ◽  
Weijia Liao ◽  

Purpose: To study the effect of Rhus chinensis Mill. extract (RCME) on diethylnitrosamine (DEN)-induced liver cirrhosis in rats. Methods: RCME was obtained by extracting the dried Rhus chinensis Mill. in water. Liver cirrhosis rat model was prepared by injecting with DEN once a week for 8 weeks. After 8th-week of RCME treatment, biochemical index and oxidative stress were determined in DEN-induced liver cirrhosis in rats. Results: Compared with model group, plasma concentrations of alanine transaminase (ALT, 125.3 ± 4.1 U/L) and aspartate aminotransferase (AST, 152.4 ± 3.5 U/L) decreased significantly (p < 0.01) in the 8th week. Rhus chinensis Mill. extract (RCME) significantly decreased malondialdehyde (MDA, 0.18 ± 0.02 umol/L) and superoxide dismutase (SOD, 0.76 ± 0.05 U/mg protein) in DEN-induced liver cirrhosis in rats (p < 0.01) when compared with model group. Conclusion: RCME protects against diethylnitrosamine-induced liver cirrhosis in rats. However, further investigations are required to ascertain the plant extract’s suitability for the clinical management of liver cirrhosis.

Sign in / Sign up

Export Citation Format

Share Document