Heisenberg Operator Approach: Nano-Mechanical Oscillator (Part 2) and the Quantum LC Circuit

Author(s):  
Duncan G. Steel

With the knowledge of the new design rules in Chapter 7, we use this new insight to find the eigenvectors for the nano-vibrator problem, and then we use the same approach to examine the quantum LC circuit. While the usual approach is to use Kirchhoff’s laws to analyze a simple circuit classically, we first see that Hamilton’s equations can in fact be used, giving the same classical result. But then, using the new design rules and the knowledge of the total energy in the circuit, we identify a canonical coordinate and a conjugate momentum that have nothing to do with real space and motion of a particle of mass m. At the same time, consistent with the Schrödinger picture, we continue to see that the time evolution of an observable such as position, x(t), or current, i(t), is not part of the solution. Given that Hamilton’s equations give the same result as Kirchhoff’s law but the quantum solution does not, reinforces the idea that the quantum description is showing features that cannot be imagined with a viewpoint based on classical (i.e. non-quantum) analysis.

2005 ◽  
Vol 1 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Ashwin Vyas ◽  
Anil K. Bajaj

The Hamiltonian dynamics of a resonantly excited linear spring-mass-damper system coupled to an array of pendulums is investigated in this study under 1:1:1:…:2 internal resonance between the pendulums and the linear oscillator. To study the small-amplitude global dynamics, a Hamiltonian formulation is introduced using generalized coordinates and momenta, and action-angle coordinates. The Hamilton’s equations are averaged to obtain equations for the first-order approximations to free and forced response of the system. Equilibrium solutions of the averaged Hamilton’s equations in action-angle or comoving variables are determined and studied for their stability characteristics. The system with one pendulum is known to be integrable in the absence of damping and external excitation. Exciting the system with even a small harmonic forcing near a saddle point leads to stochastic response, as clearly demonstrated by the Poincaré sections of motion. Poincaré sections are also computed for motions started with initial conditions near center-center, center-saddle and saddle-saddle-type equilibria for systems with two, three and four pendulums. In case of the system with more than one pendulum, even the free undamped dynamics exhibits irregular exchange of energy between the pendulums and the block. The increase in complexity is also demonstrated as the number of pendulums is increased, and when external excitation is present.


Sign in / Sign up

Export Citation Format

Share Document