forced response
Recently Published Documents


TOTAL DOCUMENTS

1473
(FIVE YEARS 281)

H-INDEX

50
(FIVE YEARS 8)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8508
Author(s):  
Oleg G. Avrunin ◽  
Yana V. Nosova ◽  
Ibrahim Younouss Abdelhamid ◽  
Sergii V. Pavlov ◽  
Natalia O. Shushliapina ◽  
...  

This study analyzes the existing methods for studying nasal breathing. The aspects of verifying the results of rhinomanometric diagnostics according to the data of spiral computed tomography are considered, and the methodological features of dynamic posterior active rhinomanometry and the main indicators of respiration are also analyzed. The possibilities of testing respiratory olfactory disorders are considered, the analysis of errors in rhinomanometric measurements is carried out. In the conclusions, practical recommendations are given that have been developed for the design and operation of tools for functional diagnostics of nasal breathing disorders. It is advisable, according to the data of dynamic rhinomanometry, to assess the functioning of the nasal valve by the shape of the air flow rate signals during forced breathing and the structures of the soft palate by the residual nasopharyngeal pressure drop. It is imperative to take into account not only the maximum coefficient of aerodynamic nose drag, but also the values of the pressure drop and air flow rate in the area of transition to the turbulent quadratic flow regime. From the point of view of the physiology of the nasal response, it is necessary to look at the dynamic change to the current mode, given the hour of the forced response, so that it will ensure the maximum possible acidity in the legend. When planning functional rhinosurgical operations, it is necessary to apply the calculation method using computed tomography, which makes it possible to predict the functional result of surgery.


2021 ◽  
Author(s):  
Karsten Haustein

<p class="p1">The role of external (radiative) forcing factors and internal unforced (ocean) low-frequency variations in the instrumental global temperature record are still hotly debated. More recent findings point towards a larger contribution from changes in external forcing, but the jury is still out. While the estimation of the human-induced total global warming fraction since pre-industrial times is fairly robust and mostly independent of multidecadal internal variability, this is not necessarily the case for key regional features such as Arctic amplification or enhanced warming over continental land areas. Accounting for the slow global temperature adjustment after strong volcanic eruptions, the spatially heterogeneous nature of anthropogenic aerosol forcing and known biases in the sea surface temperature record, almost all of the multidecadal fluctuations observed over at least the last 160+ years can be explained without a relevant role for internal variability. Using a two-box response model framework, I will demonstrate that not only multidecadal variability is very likely a forced response, but warming trends over the past 40+ years are entirely attributable to human factors. Repercussions for amplifed European (or D-A-CH for that matter) warming and associated implications for extreme weather events are discussed. Further consideration is given to the communications aspect of such critical results as well as the question of wider societal impacts.</p>


Author(s):  
J.M. Garrido-Perez ◽  
Carlos Ordóñez ◽  
David Barriopedro ◽  
Ricardo Garcia-Herrera ◽  
Jordan L. Schnell ◽  
...  

Abstract Storylines of atmospheric circulation change, or physically self-consistent narratives of plausible future events, have recently been proposed as a non-probabilistic means to represent uncertainties in climate change projections. Here, we apply the storyline approach to 21st century projections of summer air stagnation over Europe and the United States. We use a CMIP6 ensemble to generate stagnation storylines based on the forced response of three remote drivers of the Northern Hemisphere mid-latitude atmospheric circulation: North Atlantic warming, North Pacific warming, and tropical versus Arctic warming. Under a high radiative forcing scenario (SSP5-8.5), models consistently project increases in stagnation over Europe and the U.S., but the magnitude and spatial distribution of changes vary substantially across CMIP6 ensemble members, suggesting that future projections are not well-constrained when using the ensemble mean alone. We find that the diversity of projected stagnation changes depends on the forced response of remote drivers in individual models. This is especially true in Europe, where differences of ~2 summer stagnant days per degree of global warming are found amongst the different storyline combinations. For example, the greatest projected increase in stagnation for most European regions leads to the smallest increase in stagnation for southwestern Europe; i.e., limited North Atlantic warming combined with near-equitable tropical and Arctic warming. In the U.S., only the atmosphere over the northern Rocky Mountain states demonstrates comparable stagnation projection uncertainty, due to opposite influences of remote drivers on the meteorological conditions that lead to stagnation.


2021 ◽  
Author(s):  
See Yee Teh ◽  
Ahmad Rizal A Rahman ◽  
Raja Sharifuddin Ahmad Raja Badrol ◽  
Mohd Hafis Muhammad Daud

Abstract Due to an increase in gas lift demand on an existing field in Sarawak, an existing Gas Lift Compressor (GLC) on the processing platform requires to be upgraded to meet incremental oil production requirement. These sets of compressors consist of 2x100% reciprocating compressors that were designed for 1.5 MMscfd each, with discharge pressure of 55.1 barg (800psig). The gas from these compressors is used mainly for gas lift at the processing platform as well as gas lift, instrument gas and utility gas at adjacent wellhead platforms. From the Conceptual Study, the existing compressors are not able to be retrofit for upgrade and is to be replaced with 2 × 100 % new gas engine driven compressor that capable of delivery 3.0 MMscfd of compressed gas each. During the engineering stage of GLC package, Skid Dynamic Analysis has been carried out to evaluate the GLC skid structural design due to the operating dynamic load cases. The study recommended that the skid to be welded to the platform where the compressor is located to prevent the risk of high vibration. With the recommendation from Contractor's study, project team proceeded to carry out Structural Dynamic Analysis to assess the dynamic effect of the GLC skids to the platform deck. The Finite Element Analysis (FEA) results revealed that there are several modal modes mainly at the drilling deck and extension deck non-compliance to PTS guideline. Structural Dynamic Modification (SDM) and optimization was performed to dynamically stiffens the structures to shift the modal modes away from the operating range to fulfil PTS criteria. However, the SDM results was still unable to comply thus the need of Anti-Vibration Mounts (AVMs) is considered. Prior to application of AVMs, Structural Forced Response Analysis needs to be carried out to evaluate the risk of the system and confirm the requirement of the AVMs. Without the forced response analysis, the effect of AVMs, locations and numbers of AVMs cannot be addressed during the design study. This paper will discuss the issues concerning vibration from reciprocating compressors upgrade on an existing platform, changes in the existing operating and design philosophy, challenges in addressing compressor installation and utilization of AVM from the perspective of Project Team. The paper will also provide key lessons learn and recommendation for future considerations in Compressor upgrades on existing facilities from a Structural Engineering point of view. The project is currently at its detail design finalization and installation is expected to be completed by November 2021.


2021 ◽  
Author(s):  
Xiaodong He ◽  
Zhiwei Zheng ◽  
Xiuchang Huang ◽  
Sen Wang ◽  
Xinsheng Wei ◽  
...  

Abstract A damping strategy using a friction ring damper for an industrial flywheel was numerically and experimentally investigated. The friction ring damper, located on the arms of the flywheel, was experimentally found to effectively reduce the vibration amplitude of the flywheel. The vibration energy is dissipated when relative motions occur at the friction contact interfaces. Nonlinear dynamic analysis based on a lumped-parameter model of a flywheel equipped with a friction ring damper was conducted. A dimensionless parameter, κ, defined as the ratio of the critical friction force to the amplitude of harmonic force, was used to evaluate the damping performance. For several values of κ, steady-state responses under harmonic excitation and nonlinear modes were obtained using the harmonic balance method (HBM) combined with the alternating frequency–time domain method (AFT). The forced response analysis proved the existence of an optimal value of κ, which can minimize the vibration amplitude of the flywheel. The nonlinear modal analysis showed that all the damping ratio–frequency curves are completely coincident even for different κ, and the frequency corresponding to the maximum damping ratio is equal to the frequency at the intersection of the forced response curves under the fully slip and the fully stick states of the friction contact interface. By analyzing the behaviors of the friction contact interface, it is shown that the friction contact interface provides damping in the combined stick–slip state. The forced response under random excitation was calculated using the Runge–Kutta method and the friction interface behaviors were analyzed. Finally, spectral testing was conducted to verify the numerical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Donghui Yao ◽  
Yongsheng Ren ◽  
Yuhuan Zhang ◽  
Bole Ma

In this paper, the nonlinear dynamic analysis of the cutting process of composite cutting tool is performed. The cutting tool is simplified to a nonplanar bending rotating shaft. The higher-order bending deformation, structural damping, and gyroscopic effect of cutting tool are considered. It is assumed that cutting tool is subjected to a regenerative two-dimensional cutting force containing the first and second harmonic components. Based on the Hamilton principle, the motion equation of nonlinear chatter of the cutting system is derived. The nonlinear ordinary differential equations in the generalized coordinates are obtained by Galerkin method. In order to analyze the nonlinear dynamic response of cutting process, the multiscale method is used to derive the analytical approximate solution of the forced response for the cutting system under periodic cutting forces. In the forced response analysis, four cases including primary resonance and superharmonic resonance, i.e., Ω ¯ = ω 1 , Ω ¯ = ω 2 , 2 Ω ¯ = ω 1 , and 2 Ω ¯ = ω 2 , are considered. The influences of ratio of length to diameter, structural damping, cutting force, and ply angle on primary resonance and superharmonic resonance are investigated. The results show that nonlinearity due to higher-order bending deformation significantly affects the dynamic behavior of the milling process and that the effective nonlinearity of the cutting system is of hard type. Multivalued resonance curves and jump phenomenon are presented. The influences of various factors, such as ratio of length to diameter, ply angle, structural damping, cutting force, and rotating speed, are thoroughly discussed.


2021 ◽  
Author(s):  
Philipp Breul ◽  
Paulo Ceppi ◽  
Theodore Gordon Shepherd

Abstract. Climate models show a wide range of Southern Hemispheric jet responses to greenhouse gas forcing. One approach to constrain future jet response is by utilising the fluctuation-dissipation theorem (FDT) that links forced response to internal variability timescales, with the Southern Annular Mode (SAM) the most dominant mode of variability of the Southern Hemispheric jet. We show that stratospheric variability approximately doubles the SAM timescale during austral summer in both re-analysis data and models from the Coupled Model Intercomparison Project, phase 5 (CMIP5). Using a simple barotropic model, we demonstrate how the enhanced SAM timescale subsequently leads to an overestimate of the forced jet response based on FDT, and introduce a method to correct for the stratospheric influence. Even after accounting for this influence, the SAM timescale cannot explain inter-model differences in the forced jet shift across CMIP5 models during austral summer, owing to other confounding factors.


Author(s):  
Erhan Ferhatoglu ◽  
Stefano Zucca ◽  
Daniele Botto ◽  
Jury Auciello ◽  
Lorenzo Arcangeli

Abstract Friction dampers are one of the most common secondary structures utilized to alleviate excessive vibration amplitudes in turbo-machinery applications. In this paper, the dynamic behavior of the turbine bladed disks coupled with one of the special damper designs, the so-called Mid-Span Dampers (MSDs) that is commonly used in steam turbines of Baker Hughes Company, is thoroughly studied. Friction between the blade and the damper is modeled through a large number of contact nodes by using 2D contact elements with a variable normal load. In the solution procedure, the coupled static/dynamic Harmonic Balance approach is utilized for the first time in the assessment of the dissipation capability of MSDs, computationally shown by predicting the forced response levels of the system at different resonances. Moreover, it is demonstrated that the nonlinear dynamic response is non-unique and it may vary considerably even if all the user-controlled inputs are kept identical. This phenomenon is a novel observation for MSDs and it is explained by an uncertainty present in the contact forces. Contact conditions corresponding to multiple responses are also investigated to unveil the different kinematics of the damper under the same nominal conditions.


2021 ◽  
Vol 11 (22) ◽  
pp. 10948
Author(s):  
Elisabetta Manconi ◽  
Sergey V. Sorokin ◽  
Garziera Rinaldo ◽  
Matheus Mikael Quartaroli

In many practical engineering situations, a source of vibrations may excite a large and flexible structure such as a ship’s deck, an aeroplane fuselage, a satellite antenna, a wall panel. To avoid transmission of the vibration and structure-borne sound, radial or polar periodicity may be used. In these cases, numerical approaches to study free and forced wave propagation close to the excitation source in polar coordinates are desirable. This is the paper’s aim, where a numerical method based on Floquet-theory and the FE discretision of a finite slice of the radial periodic structure is presented and verified. Only a small slice of the structure is analysed, which is approximated using piecewise Cartesian segments. Wave characteristics in each segment are obtained by the theory of wave propagation in periodic Cartesian structures and Finite Element analysis, while wave amplitude change due to the changes in the geometry of the slice is accommodated in the model assuming that the energy flow through the segments is the same. Forced response of the structure is then evaluated in the wave domain. Results are verified for an infinite isotropic thin plate excited by a point harmonic force. A plate with a periodic radial change of thickness is then studied. Free waves propagation are shown, and the forced response in the nearfield is evaluated, showing the validity of the method and the computational advantage compared to FE harmonic analysis for infinite structures.


Sign in / Sign up

Export Citation Format

Share Document