arbitrary lagrangian eulerian
Recently Published Documents


TOTAL DOCUMENTS

817
(FIVE YEARS 198)

H-INDEX

45
(FIVE YEARS 6)

2022 ◽  
Vol 3 ◽  
Author(s):  
Vitalii Starchenko

A fundamental understanding of mineral precipitation kinetics relies largely on microscopic observations of the dynamics of mineral surfaces exposed to supersaturated solutions. Deconvolution of tightly bound transport, surface reaction, and crystal nucleation phenomena still remains one of the main challenges. Particularly, the influence of these processes on texture and morphology of mineral precipitate remains unclear. This study presents a coupling of pore-scale reactive transport modeling with the Arbitrary Lagrangian-Eulerian approach for tracking evolution of explicit solid interface during mineral precipitation. It incorporates a heterogeneous nucleation mechanism according to Classical Nucleation Theory which can be turned “on” or “off.” This approach allows us to demonstrate the role of nucleation on precipitate texture with a focus at micrometer scale. In this work precipitate formation is modeled on a 10 micrometer radius particle in reactive flow. The evolution of explicit interface accounts for the surface curvature which is crucial at this scale in the regime of emerging instabilities. The results illustrate how the surface reaction and reactive fluid flow affect the shape of precipitate on a solid particle. It is shown that nucleation promotes the formation of irregularly shaped precipitate and diminishes the effect of the flow on the asymmetry of precipitation around the particle. The observed differences in precipitate structure are expected to be an important benchmark for reaction-driven precipitation in natural environments.


Author(s):  
Michael Pieber ◽  
Konstantina Ntarladima ◽  
Robert Winkler ◽  
Johannes Gerstmayr

Abstract The present work addresses pipes conveying fluid and axially moving beams undergoing large deformations. A novel two dimensional beam finite element is presented, based on the Absolute Nodal Coordinate Formulation (ANCF) with an extra Eulerian coordinate to describe axial motion. The resulting formulation is well known as Arbitrary Lagrangian Eulerian (ALE) method, which is often used to model axially moving beams and pipes conveying fluid. The proposed approach, which is derived from an extended version of Lagrange's equations of motion, allows for the investigation of the stability of pipes conveying fluid and axially moving beams for a certain axial velocity and stationary state of large deformation. Additionally, a multibody modeling approach allows us to extend the beam formulation for co-moving discrete masses, which represent concentrated masses attached to the beam, e.g., gondolas in ropeway systems, or transported masses in conveyor belts. Within numerical investigations, we show that axially moving beams and a larger number of discrete masses behave similarly as the case of (continuously) distributed mass.


2022 ◽  
pp. 1-33
Author(s):  
Yan Xu ◽  
Yang Caijin ◽  
Weihua Zhang ◽  
Weidong Zhu ◽  
Wei Fan

Abstract A new moving Kirchhoff-Love plate element is developed in this work to accurately and efficiently calculate the dynamic response of vehicle-pavement interaction. Since the vehicle can only affect a small region nearby, the wide pavement is reduced to a small reduced plate area around the vehicle. The vehicle loads moving along an arbitrary trajectory is considered, and the arbitrary Lagrangian-Eulerian method is used here for coordinate conversion. The reduced plate area is spatially discretized using the current moving plate element, where its governing equations are derived using Lagrange's equations. The moving plate element is validated by different plate subjected to moving load cases, where the influences of different factors on reduced plate area length of the RBM model are also investigated. Then a vehicle-pavement interaction case with constant and variable speed is analyzed here. The calculation results from the moving plate element are in good agreement with those from the modal superposition method (MSM), and the calculation time with the moving plate element is only one third of that using the MSM. It is also found that the moving load velocity and ground damping have great influences on reduced plate area length of the RBM. The moving plate element is accurate and more efficient than the MSM in calculating the dynamic response of the vehicle-pavement interaction.


2021 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Jung Min Sohn ◽  
Ji Woo Kim ◽  
Sang Ho Kim

There are many methods for crushing seabed rock such as a using a free-falling crusher, blasting, and chemical liquid expansion. Blasting and chemical liquid expansion can lead to environmental destruction, noise pollution, and civil complaints. Therefore, a free-falling crusher is generally recommended for use. Understanding the characteristics of a crusher in water and the impact force on the ground is helpful for designing a crusher and dredge work. In this study, drop tests of 50 and 70 ton crusher models that were scaled down by 15 times were investigated. The tests were conducted in a water basin by the Research Institute of Medium and Small Shipbuilding (RIMS) in Korea. Four water depths were considered with different falling locations: water surface and air. Moreover, a numerical study on Fluid–Structure Interaction (FSI) analysis for a free-falling crusher was conducted by applying the Arbitrary Lagrangian–Eulerian (ALE) element and the Grüneisen Equation of State (EoS) to fluid models. The crusher and ground were modeled as Lagrangian elements to estimate the impact force on the ground. Before comparing the crusher model, a free-falling sphere model was used to develop FSI technologies by comparing past Computational Fluid Dynamics (CFD) and experimental results. Moreover, the recommended mesh size and fluid domain for FSI analysis are provided to achieve good results via convergence tests. Comparison between experimental and numerical methods demonstrated a similar tendency such that impact force increased at a higher depth. Certain numerical results agree with average values of experimental results; however, multiple numerical cases exhibit a moderate difference. This is because of angular rotation between the crusher and ground when the crusher hits the ground during experiments.


Author(s):  
Jean-Luc Guermond ◽  
Bojan Popov ◽  
Laura Saavedra

AbstractAn invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed. The numerical scheme is explicit in time and the approximation in space is done with continuous finite elements. The method is made invariant domain preserving for the Euler equations using convex limiting and is tested on various benchmarks.


Author(s):  
R Pramod ◽  
Vikram Kumar S Jain ◽  
S Mohan Kumar ◽  
B Girinath ◽  
A Rajesh Kannan ◽  
...  

The present work focused on welding aluminium alloy 5083 using the friction stir welding process. Suitable welding process parameters were identified to fabricate a defect-free butt joint with a tool rotational speed of 1600 rpm, traverse speed of 20 mm/min and tilt angle of 3°. The microstructure at the nugget zone, thermo mechanically affected zone, heat-affected zone and base metal zone are examined. Mechanical properties of the weldment exhibited promising results with an average joint efficiency and hardness of 75.70% and 94.0 ± 5.0 vickers hardness, respectively. Fractography revealed ductile mode of failure in base and weld metal tensile samples. Furthermore, a 3D thermomechanical finite element model was utilized to simulate the friction stir welding process using the selected process parameters. Arbitrary Lagrangian–Eulerian-based model aided in predicting residual stress distributions and thermal history during the friction stir welding process.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4454
Author(s):  
Célio Fernandes ◽  
Ahmad Fakhari ◽  
Željko Tukovic

Polymer extrudate swelling is a rheological phenomenon that occurs after polymer melt flow emerges at the die exit of extrusion equipment due to molecular stress relaxations and flow redistributions. Specifically, with the growing demand for large scale and high productivity, polymer pipes have recently been produced by extrusion. This study reports the development of a new incompressible non-isothermal finite volume method, based on the Arbitrary Lagrangian–Eulerian (ALE) formulation, to compute the viscous flow of polymer melts obeying the Herschel–Bulkley constitutive equation. The Papanastasiou-regularized version of the constitutive equation is employed. The influence of the temperature on the rheological behavior of the material is controlled by the Williams–Landel–Ferry (WLF) function. The new method is validated by comparing the extrudate swell ratio obtained for Bingham and Herschel–Bulkley flows (shear-thinning and shear-thickening) with reference data found in the scientific literature. Additionally, the essential flow characteristics including yield-stress, inertia and non-isothermal effects were investigated.


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
Shan Wang ◽  
H B Luo ◽  
C Guedes Soares

The two-dimensional water entry of bow-flared sections is studied by using a Multi-Material Arbitrary Lagrangian- Eulerian (MMALE) formulation and a penalty-coupling algorithm. A convergence study is carried out, considering the effects of mesh size, the dimension of fluids domain, and fluid leakage phenomenon through the structure. The predicted results on the wetted surface of a bow-flared section are compared with published experimental values in terms of vertical slamming force, pressure distributions at different time instances and the pressure histories at different points. Comparisons between the numerical results and measured values show satisfactory correlation. An approximation method is adopted to estimate the sectional slamming force showing good consistency for the peak forces.


2021 ◽  
Author(s):  
Zhou Zhou ◽  
Xiaogai Li ◽  
August Domel ◽  
Emily Dennis ◽  
Marios Georgiadis ◽  
...  

Hippocampal injury is common in traumatic brain injury (TBI) patients, but the underlying pathogenesis remains elusive. In this study, we hypothesize that the presence of the adjacent fluid-containing temporal horn exacerbates the biomechanical vulnerability of the hippocampus. Two finite element models of the human head were used to investigate this hypothesis, one with and one without the temporal horn, and both including a detailed hippocampal subfield delineation. A fluid-structure interaction coupling approach was used to simulate the brain-ventricle interface, in which the intraventricular cerebrospinal fluid was represented by an arbitrary Lagrangian-Eulerian multi-material formation to account for its fluid behavior. By comparing the response of these two models under identical loadings, the model that included the temporal horn predicted increased magnitudes of strain and strain rate in the hippocampus with respect to its counterpart without the temporal horn. This specifically affected cornu ammonis (CA) 1 (CA1), CA2/3, hippocampal tail, subiculum, and the adjacent amygdala and ventral diencephalon. These computational results suggest the presence of the temporal horn is a predisposing factor for the prevalence of hippocampal injury, advancing the understanding of hippocampal injury during head impacts. A corresponding analysis in an imaging cohort of collegiate athletes found that temporal horn size negatively correlates with hippocampal volume in the same subfields, suggesting a possible real-world correlation whereby a larger temporal horn may be associated with decreased hippocampal volume. Our biomechanical and neuroimaging effort collectively highlight the mechanobiological and anatomical interdependency between the hippocampus and temporal horn.


Sign in / Sign up

Export Citation Format

Share Document