scholarly journals Robotic-Assisted, Body-Weight–Supported Treadmill Training in Individuals Following Motor Incomplete Spinal Cord Injury

2005 ◽  
Vol 85 (1) ◽  
pp. 52-66 ◽  
Author(s):  
T George Hornby ◽  
David H Zemon ◽  
Donielle Campbell

AbstractBackground and Purpose. Performance of therapist-assisted, body-weight–supported treadmill training (BWSTT) to enhance walking ability of people with neurological injury is an area of intense research. Its application in the clinical setting, however, is limited by the personnel and labor requirements placed on physical therapists. Recent development of motorized (“robotic”) rehabilitative devices that provide assistance during stepping may improve delivery of BWSTT. Case Description. This case report describes the use of a robotic device to enhance motor recovery and ambulation in 3 people following motor incomplete spinal cord injury. Interventions. Changes in motor impairment, functional limitations, and locomotor disability were monitored weekly during robotic-assisted BWSTT and following transition to therapist-assisted BWSTT with the assistance of one therapist. Outcomes. Following this training, 2 patients recovered independent over-ground walking and another improved his gait speed and endurance. Discussion. The use of robotic devices may assist physical therapists by providing task-specific practice of stepping in people following neurological injury.

2021 ◽  
Vol 6 (4) ◽  
pp. 191-197
Author(s):  
Kanika Singhal ◽  
Chitra Kataria

Background: Rhythmic auditory stimulation and body weight supported treadmill training both are standardized gait rehabilitation techniques. However there is limited literature evaluating the effect of rhythmic auditory stimulation and its combination with gait training in spinal cord injury. Aim of this study is to determine the short term effectiveness of rhythmic auditory stimulation with body weight supported treadmill training on gait and balance in individuals with incomplete Spinal Cord Injury. Method: A randomized control study design. 8 subjects with incomplete spinal cord injury who met the inclusion criteria were randomly allocated into two groups: Experimental and Control. Subjects in experimental group were given body weight supported treadmill training with rhythmic auditory stimulation. Subjects in Control Group were given Body weight supported treadmill training alone. Both the groups received conventional rehabilitation as well. Both groups received training for 30 minutes, five times a week for two weeks (10 sessions). Outcome Measures: Gait parameters i.e. cadence, velocity, step length were measured using the Biodex Gait Trainer 2TM, level of walking performance measured using Walking Index for Spinal Cord Injury II, and balance was evaluated using Prokin 252NTM , Berg Balance Scale, and Activity specific Balance Confidence scale. Results: No significant improvement was found on gait parameters i.e. cadence, velocity, step length which were measured using the Gait Trainer, level of walking performance measured using WISCI II, and balance which was evaluated using Prokin 252NTM , Berg Balance Scale, and Activity specific Balance Confidence scale. Conclusion: Rhythmic auditory stimulation didn’t have any positive effect on gait training in incomplete spinal cord injured patients. Further studies are warranted to explore the entrainment effects of rhythmic auditory stimulation in spinal cord injured individuals on gait rehabilitation. Keywords: Rhythmic Auditory Stimulation (RAS), Body Weight Supported Treadmill Training (BWSTT), Metronome, Incomplete spinal cord injury, Biodex Gait Trainer 2.0, Prokin 252N


2004 ◽  
Vol 97 (2) ◽  
pp. 716-724 ◽  
Author(s):  
Stuart M. Phillips ◽  
Brian G. Stewart ◽  
Douglas J. Mahoney ◽  
Audrey L. Hicks ◽  
Neil McCartney ◽  
...  

The impact of a 6-mo body-weight-supported treadmill training program on glucose homeostasis and muscle metabolic characteristics was investigated. Nine individuals (31 ± 3 yr, 8.1 ± 2.5 yr postinjury; means ± SE) with incomplete spinal cord injury trained three times weekly for a total of 6 mo. Training session duration and intensity (velocity) increased by 54 ± 10% ( P < 0.01) and 135 ± 20%, respectively. Muscle biopsies and a modified glucose tolerance test (100 g glucose with [U-13C]glucose) were performed before (Pre) and after training (Post). Training resulted in a reduction in area under the curve of glucose × time (−15 ± 4%) and insulin × time (−33 ± 8%; both P < 0.05). Oxidation of exogenous (ingested) glucose increased as a result of training (Pre = 4.4 ± 0.7 g/h, Post = 7.4 ± 0.6 g/h; P < 0.05), as did oxidation of endogenous (liver) glucose (Pre = 3.8 ± 0.3 g/h, Post = 5.2 ± 0.3 g/h; P < 0.05). Training resulted in increased muscle glycogen (80 ± 23%; P < 0.05) and GLUT-4 content and hexokinase II enzyme activity (126 ± 34 and 49 ± 4%, respectively, both P < 0.01). Resting muscle phosphocreatine content also increased after training (Pre = 62.1 ± 4.3, Post = 78.7 ± 3.8, both mmol/kg dry wt and P < 0.05). Six months of thrice-weekly body-weight-supported treadmill training in persons with an incomplete spinal cord injury improved blood glucose regulation by increasing oxidation and storage of an oral glucose load. Increases in the capacity for transport and phosphorylation glucose in skeletal muscle likely play a role in these adaptations.


Sign in / Sign up

Export Citation Format

Share Document