scholarly journals On the Connection Between Step Approximations and Depth-Averaged Models for Wave Scattering by Variable Bathymetry

2020 ◽  
Vol 73 (1) ◽  
pp. 84-100
Author(s):  
R Porter

Summary Two popular and computationally inexpensive class of methods for approximating the propagation of surface waves over two-dimensional variable bathymetry are ‘step approximations’ and ‘depth-averaged models’. In the former, the bathymetry is discretised into short sections of constant depth connected by vertical steps. Scattering across the bathymetry is calculated from the product of $2 \times 2$ transfer matrices whose entries encode scattering properties at each vertical step taken in isolation from all others. In the latter, a separable depth dependence is assumed in the underlying velocity field and a vertical averaging process is implemented leading to a second-order ordinary differential equation (ODE). In this article, the step approximation is revisited and shown to be equivalent to an ODE describing a depth-averaged model in the limit of zero-step length. The ODE depends on how the solution to the canonical vertical step problem is approximated. If a shallow water approximation is used, then the well-known linear shallow water equation results. If a plane-wave variational approximation is used, then a new variant of the mild-slope equations is recovered.

PAMM ◽  
2021 ◽  
Vol 20 (S1) ◽  
Author(s):  
Süleyman Yıldız ◽  
Pawan Goyal ◽  
Peter Benner ◽  
Bülent Karasözen

2000 ◽  
Vol 24 (10) ◽  
pp. 649-661 ◽  
Author(s):  
Mohamed Atef Helal

This paper is mainly concerned with the motion of an incompressible fluid in a slowly rotating rectangular basin. The equations of motion of such a problem with its boundary conditions are reduced to a system of nonlinear equations, which is to be solved by applying the shallow water approximation theory. Each unknown of the problem is expanded asymptotically in terms of the small parameterϵwhich generally depends on some intrinsic quantities of the problem of study. For each order of approximation, the nonlinear system of equations is presented successively. It is worthy to note that such a study has useful applications in the oceanography.


2016 ◽  
Vol 43 (4) ◽  
pp. 82-87 ◽  
Author(s):  
Kentaro Sano ◽  
Fumiya Kono ◽  
Naohito Nakasato ◽  
Alexander Vazhenin ◽  
Stanislav Sedukhin

Sign in / Sign up

Export Citation Format

Share Document