flow routing
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 44)

H-INDEX

27
(FIVE YEARS 3)

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3454
Author(s):  
Yanxia Shen ◽  
Chunbo Jiang ◽  
Qi Zhou ◽  
Dejun Zhu ◽  
Di Zhang

Surface flow routing is an important component in hydrologic and hydrodynamic research. Based on a literature review and comparing the different coupling models (the hydrologic model and hydrodynamic model), a multigrid dynamic bidirectional coupled surface flow routing model (M-DBCM), consisting of diffusion wave equations (DWEs) and shallow water equations (SWEs), is proposed herein based on grids with different resolutions. DWEs were applied to obtain runoff routing in coarse grid regions to improve the computational efficiency, while the DWEs and SWEs were bidirectionally coupled to detail the flood dynamics in fine grid regions to obtain good accuracy. In fine grid zones, the DWEs and SWEs were connected by an internal moving boundary, which ensured the conservation of mass and momentum through the internal moving boundary. The DWEs and SWEs were solved by using the time explicit scheme, and different time steps were adopted in regions with different grid sizes. The proposed M-DBCM was validated via three cases, and the results showed that the M-DBCM can effectively simulate the process of surface flow routing, which had reliable computational efficiency while maintaining satisfactory simulation accuracy. The rainfall runoff in the Goodwin Creek Watershed was simulated based on the proposed M-DBCM. The results showed that the discharge hydrographs simulated by the M-DBCM were closer to the measured data, and the simulation results were more realistic and reliable, which will be useful in assisting flood mitigation and management.


2021 ◽  
Vol 55 (5) ◽  
pp. 2631-2637
Author(s):  
Leizer L. Pinto ◽  
Kátia C. C. Fernandes ◽  
Kleber V. Cardoso

This paper considers an exact bi-objective approach for simultaneously minimizing the total cost of flow routing and the network bottleneck when link qualities and flow weights are relevant. This is useful for wireless multi-hop networks with long-term TCP (Transmission Control Protocol) flows. The introduced proposal can generate a minimal complete set of Pareto-optimal solutions. Our proposal is evaluated through simulation in which are explored different parameter settings and metrics.


2021 ◽  
Vol 13 (12) ◽  
pp. 2368
Author(s):  
Lawrence V. Stanislawski ◽  
Ethan J. Shavers ◽  
Shaowen Wang ◽  
Zhe Jiang ◽  
E. Lynn Usery ◽  
...  

Accurate maps of regional surface water features are integral for advancing ecologic, atmospheric and land development studies. The only comprehensive surface water feature map of Alaska is the National Hydrography Dataset (NHD). NHD features are often digitized representations of historic topographic map blue lines and may be outdated. Here we test deep learning methods to automatically extract surface water features from airborne interferometric synthetic aperture radar (IfSAR) data to update and validate Alaska hydrographic databases. U-net artificial neural networks (ANN) and high-performance computing (HPC) are used for supervised hydrographic feature extraction within a study area comprised of 50 contiguous watersheds in Alaska. Surface water features derived from elevation through automated flow-routing and manual editing are used as training data. Model extensibility is tested with a series of 16 U-net models trained with increasing percentages of the study area, from about 3 to 35 percent. Hydrography is predicted by each of the models for all watersheds not used in training. Input raster layers are derived from digital terrain models, digital surface models, and intensity images from the IfSAR data. Results indicate about 15 percent of the study area is required to optimally train the ANN to extract hydrography when F1-scores for tested watersheds average between 66 and 68. Little benefit is gained by training beyond 15 percent of the study area. Fully connected hydrographic networks are generated for the U-net predictions using a novel approach that constrains a D-8 flow-routing approach to follow U-net predictions. This work demonstrates the ability of deep learning to derive surface water feature maps from complex terrain over a broad area.


Author(s):  
Chengpeng Lu ◽  
Keyan Ji ◽  
Wanjie Wang ◽  
Yong Zhang ◽  
Tema Koketso Ealotswe ◽  
...  

Silva Fennica ◽  
2021 ◽  
Vol 55 (5) ◽  
Author(s):  
Mikko Niemi

The pulse density of airborne Light Detection and Ranging (LiDAR) is increasing due to technical developments. The trade-offs between pulse density, inventory costs, and forest attribute measurement accuracy are extensively studied, but the possibilities of high-density airborne LiDAR in stream extraction and soil wetness mapping are unknown. This study aimed to refine the best practices for generating a hydrologically conditioned digital elevation model (DEM) from an airborne LiDAR -derived 3D point cloud. Depressionless DEMs were processed using a stepwise breaching-filling method, and the performance of overland flow routing was studied in relation to a pulse density, an interpolation method, and a raster cell size. The study area was situated on a densely ditched forestry site in Parkano municipality, for which LiDAR data with a pulse density of 5 m were available. Stream networks and a topographic wetness index (TWI) were derived from altogether 12 DEM versions. The topological database of Finland was used as a ground reference in comparison, in addition to 40 selected main flow routes within the catchment. The results show improved performance of overland flow modeling due to increased data density. In addition, commonly used triangulated irregular networks were clearly outperformed by universal kriging and inverse-distance weighting in DEM interpolation. However, the TWI proved to be more sensitive to pulse density than an interpolation method. Improved overland flow routing contributes to enhanced forest resource planning at detailed spatial scales.–2


Sign in / Sign up

Export Citation Format

Share Document