LOCAL COHOMOLOGY THEORY IN COMMUTATIVE ALGEBRA

1970 ◽  
Vol 21 (4) ◽  
pp. 425-434 ◽  
Author(s):  
R. Y. SHARP
2020 ◽  
Vol 23 (1) ◽  
pp. 479-483
Author(s):  
Cam Thi Hong Bui ◽  
Tri Minh Nguyen

The local cohomology theory plays an important role in commutative algebra and algebraic geometry. The I-cofiniteness of local cohomology modules is one of interesting properties which has been studied by many mathematicians. The I-cominimax modules is an extension of I-cofinite modules which was introduced by Hartshorne. An R-module M is I-cominimax if Supp_R(M)\subseteq V(I) and Ext^i_R(R/I,M) is minimax for all  i\ge 0. In this paper, we show some conditions such that the generalized local cohomology module H^i_I(M,N) is I-cominimax for all i\ge 0. We show that if H^i_I(M,K) is I-cofinite for all i<t and all finitely generated R-module K, then  H^i_I(M,N) is I-cominimax for all i<t  and all minimax R-module N.  If M is a finitely generated R-module, N is a minimax R-module and t is a non-negative integer such that  dim Supp_R(H^i_I(M,N))\le 1 for all i<t then H^i_I(M,N) is I-cominimax for all  i<t. When  dim R/I\le 1 and H^i_I(N) is I-cominimax for all  i\ge 0 then H^i_I(M,N) is I-cominimax for all i\ge 0.


2019 ◽  
Vol 19 (11) ◽  
pp. 2050222
Author(s):  
Fatemeh Savoji ◽  
Reza Sazeedeh

Let [Formula: see text] be a locally noetherian Grothendieck category. In this paper, we define and study the section functor on [Formula: see text] with respect to an open subset of [Formula: see text]. Next, we define and study local cohomology theory in [Formula: see text] in terms of the section functors. Finally, we study abstract local cohomology functor on the derived category [Formula: see text].


Author(s):  
Peter Schenzel

The local cohomology theory introduced by Grothendieck(1) is a useful tool for attacking problems in commutative algebra and algebraic geometry. Let A denote a local ring with its unique maximal ideal m. For an ideal I ⊂ A and a finitely generated A-module M we consider the local cohomology modules HiI (M), i є ℤ, of M with respect to I, see Grothendieck(1) for the definition. In particular, the vanishing resp. non-vanishing of the local cohomology modules is of a special interest. For more subtle considerations it is necessary to study the cohomological annihilators, i.e. aiI(M): = AnnΔHiI(M), iєℤ. In the case of the maximal ideal I = m these ideals were used by Roberts (6) to prove the ‘New Intersection Theorem’ for local rings of prime characteristic. Furthermore, we used this notion (7) in order to show the amiability of local rings possessing a dualizing complex. Note that the amiability of a system of parameters is the key step for Hochster's construction of big Cohen-Macaulay modules for local rings of prime characteristic, see Hochster(3) and (4).


2017 ◽  
Vol 153 (10) ◽  
pp. 2147-2170 ◽  
Author(s):  
Linquan Ma ◽  
Karl Schwede ◽  
Kazuma Shimomoto

In this paper we study the local cohomology modules of Du Bois singularities. Let $(R,\mathfrak{m})$ be a local ring; we prove that if $R_{\text{red}}$ is Du Bois, then $H_{\mathfrak{m}}^{i}(R)\rightarrow H_{\mathfrak{m}}^{i}(R_{\text{red}})$ is surjective for every $i$. We find many applications of this result. For example, we answer a question of Kovács and Schwede [Inversion of adjunction for rational and Du Bois pairs, Algebra Number Theory 10 (2016), 969–1000; MR 3531359] on the Cohen–Macaulay property of Du Bois singularities. We obtain results on the injectivity of $\operatorname{Ext}$ that provide substantial partial answers to questions in Eisenbud et al. [Cohomology on toric varieties and local cohomology with monomial supports, J. Symbolic Comput. 29 (2000), 583–600] in characteristic $0$. These results can also be viewed as generalizations of the Kodaira vanishing theorem for Cohen–Macaulay Du Bois varieties. We prove results on the set-theoretic Cohen–Macaulayness of the defining ideal of Du Bois singularities, which are characteristic-$0$ analogs and generalizations of results of Singh–Walther and answer some of their questions in Singh and Walther [On the arithmetic rank of certain Segre products, in Commutative algebra and algebraic geometry, Contemporary Mathematics, vol. 390 (American Mathematical Society, Providence, RI, 2005), 147–155]. We extend results on the relation between Koszul cohomology and local cohomology for $F$-injective and Du Bois singularities first shown in Hochster and Roberts [The purity of the Frobenius and local cohomology, Adv. Math. 21 (1976), 117–172; MR 0417172 (54 #5230)]. We also prove that singularities of dense $F$-injective type deform.


2019 ◽  
Vol 29 (03) ◽  
pp. 581-601
Author(s):  
Do Ngoc Yen ◽  
Tran Tuan Nam

We study the generalized local homology for linearly compact modules which is a generalization of the local homology theory. By duality, we get some properties of the generalized local cohomology and extend well-known properties of the local cohomology theory of Grothendieck.


2022 ◽  
Vol 40 ◽  
pp. 1-5
Author(s):  
Dawood Hassanzadeh-lelekaami

In this paper, we use local cohomology theory to present some results about connectedness property of prime spectrum of modules. In particular, we generalize the Hartshorne's connectedness theorem.


Sign in / Sign up

Export Citation Format

Share Document