FUNDAMENTAL DUALIZING COMPLEXES FOR COMMUTATIVE NOETHERIAN RINGS

1979 ◽  
Vol 30 (1) ◽  
pp. 21-32 ◽  
Author(s):  
JANET E. HALL
Author(s):  
Janet E. Hall ◽  
Rodney Y. Sharp

All rings considered in this paper will be commutative and Noetherian, will have identities, and will be assumed to be non-trivial unless otherwise specified. The letter A will always denote such a ring. It is to be assumed that ring homomorphisms respect identity elements.


Author(s):  
Rodney Y. Sharp

The theory of dualizing complexes of Grothendieck and Hartshorne ((5), chapter v) has turned out to be a useful tool even in commutative algebra. For instance, Peskine and Szpiro used dualizing complexes in their (partial) solution of Bass's conjecture concerning finitely-generated (f.-g.) modules of finite injective dimension over a Noetherian local ring ((7), chapitre I, §5); and the present author first obtained the results in (9) by using dualizing complexes.


Author(s):  
John Cozzens ◽  
CArl Faith
Keyword(s):  

Author(s):  
A. V. Jategaonkar
Keyword(s):  

1968 ◽  
Vol 177 (4) ◽  
pp. 278-282 ◽  
Author(s):  
Paul M. Eakin
Keyword(s):  

2001 ◽  
Vol 353 (5) ◽  
pp. 1839-1883 ◽  
Author(s):  
Lars Winther Christensen
Keyword(s):  

2007 ◽  
Vol 208 (2) ◽  
pp. 739-760 ◽  
Author(s):  
Meral Arnavut ◽  
Melissa Luckas ◽  
Sylvia Wiegand

1990 ◽  
Vol 322 (2) ◽  
pp. 561 ◽  
Author(s):  
Uwe Schafer ◽  
Peter Schenzel

1979 ◽  
Vol 20 (2) ◽  
pp. 125-128 ◽  
Author(s):  
A. W. Chatters

Throughout this note, rings are associative with identity element but are not necessarily commutative. Let R be a left and right Noetherian ring which has an Artinian (classical) quotient ring. It was shown by S. M. Ginn and P. B. Moss [2, Theorem 10] that there is a central idempotent element e of R such that eR is the largest Artinian ideal of R. We shall extend this result, using a different method of proof, to show that the idempotent e is also related to the socle of R/N (where N, throughout, denotes the largest nilpotent ideal of R) and to the intersection of all the principal right (or left) ideals of R generated by regular elements (i.e. by elements which are not zero-divisors). There are many examples of left and right Noetherian rings with Artinian quotient rings, e.g. commutative Noetherian rings in which all the associated primes of zero are minimal together with full or triangular matrix rings over such rings. It was shown by L. W. Small that if R is any left and right Noetherian ring then R has an Artinian quotient ring if and only if the regular elements of R are precisely the elements c of R such that c + N is a regular element of R/N (for further details and examples see [5] and [6]). By the largest Artinian ideal of R we mean the sum of all the Artinian right ideals of R, and it was shown by T. H. Lenagan in [3] that this coincides in any left and right Noetherian ring R with the sum of all the Artinian left ideals of R.


Sign in / Sign up

Export Citation Format

Share Document