scholarly journals A note on Noetherian orders in Artinian rings

1979 ◽  
Vol 20 (2) ◽  
pp. 125-128 ◽  
Author(s):  
A. W. Chatters

Throughout this note, rings are associative with identity element but are not necessarily commutative. Let R be a left and right Noetherian ring which has an Artinian (classical) quotient ring. It was shown by S. M. Ginn and P. B. Moss [2, Theorem 10] that there is a central idempotent element e of R such that eR is the largest Artinian ideal of R. We shall extend this result, using a different method of proof, to show that the idempotent e is also related to the socle of R/N (where N, throughout, denotes the largest nilpotent ideal of R) and to the intersection of all the principal right (or left) ideals of R generated by regular elements (i.e. by elements which are not zero-divisors). There are many examples of left and right Noetherian rings with Artinian quotient rings, e.g. commutative Noetherian rings in which all the associated primes of zero are minimal together with full or triangular matrix rings over such rings. It was shown by L. W. Small that if R is any left and right Noetherian ring then R has an Artinian quotient ring if and only if the regular elements of R are precisely the elements c of R such that c + N is a regular element of R/N (for further details and examples see [5] and [6]). By the largest Artinian ideal of R we mean the sum of all the Artinian right ideals of R, and it was shown by T. H. Lenagan in [3] that this coincides in any left and right Noetherian ring R with the sum of all the Artinian left ideals of R.

1980 ◽  
Vol 23 (2) ◽  
pp. 187-192 ◽  
Author(s):  
A. W. Chatters

A ring R is said to satisfy the right Ore condition with respect to a subset C of R if, given a ∈ R and e ∈ C, there exist b ∈ R and D ∈ C such that ad = cb. It is well known that R has a classical right quotient ring if and only if R satisfies the right Ore condition with respect to C when C is the set of regular elements of R (a regular elemept of R being an element of R which is not a zero-divisor). It is also well known that not every ring has a classical right quotient ring. If we make the non-trivial assumption that R has a classical right quotient ring, it is natural to ask whether this property also holds in certain rings related to R such as the ring Mn(R) of all n by n matrices over R. Some answers to this question are known when extra assumptions are made. For example, it was shown by L. W. Small in (5) that if R has a classical right quotient ring Q which is right Artinian then Mn(Q) is the right quotient ring of Mn(R) and eQe is the right quotient ring of eRe where e is an idempotent element of R. Also it was shown by C. R. Hajarnavis in (3) that if R is a Noetherian ring all of whose ideals satisfy the Artin-Rees property then R has a quotient ring Q and Mn(Q) is the quotient ring of Mn(R).


1976 ◽  
Vol 28 (3) ◽  
pp. 600-610 ◽  
Author(s):  
Bruno J. Müller

To construct a well behaved localization of a noetherian ringRat a semiprime ideal S, it seems necessary to assume that the set(S)of moduloSregular elements satisfies the Ore condition ; and it is convenient to require the Artin Rees property for the Jacobson radical of the quotient ringRsin addition: one calls such 5classical.To determine the classical semiprime ideals is no easy matter; it happens frequently that a prime ideal fails to be classical itself, but is minimal over a suitable classical semiprime ideal.


1984 ◽  
Vol 25 (1) ◽  
pp. 1-5 ◽  
Author(s):  
A. W. Chatters ◽  
S. M. Ginn

The units of a ring R are defined by means of a multiplicative property, but in many cases they generate R additively. For example, it is shown in [5, Proposition 6] that if R is a semi-simple Artinian ring then every element of R is a sum of units if and only if the ring S = ℤ/2ℤ⊕ℤ/2ℤ is not a direct summand of R, where ℤ denotes the ring of integers. The theme of this paper is to investigate the corresponding situation concerning regular elements, i. e. elements which are not zero-divisors. We show that if R is a semi-prime right Goldie ring then every element of R is a sum of regular elements if and only if R does not have the ring S defined above as a direct summand (Corollary 2.9). We also characterise those Noetherian rings R such that every element of R is a sum of regular elements (Theorem 2. 6). The characterisation is in terms of the nature of certain prime factor rings of R, and it is again the presence of the ring S, this time in a particular way as a factor ring of R, which prevents R from being generated by its regular elements. If R has no non-zero Artinian one-sided ideals or if 2 is a regular element of R, then every element of R is a sum of regular elements (Corollaries 2. 5 and 2. 7). As an application we show in Section 3 that, for many Noetherian rings R, the set of elements of R which are divisible by every regular element of R is a two-sided ideal of R.


1981 ◽  
Vol 33 (3) ◽  
pp. 734-748 ◽  
Author(s):  
Bruno J. Müller

Our work was motivated by attempts to find a criterion for the existence of a classical quotient ring, for a noetherian ring, in analogy with the various known criteria for the existence of an artinian classical quotient ring ([9], [10], [13], [2]).We have restricted our attention to Krull symmetric noetherian rings R, and we make heavy use of the fact that all their Krull composition factors are non-singular (Proposition 7). The collection Kprime R of the associated primes of the Krull composition factors of R plays a central role, taking the place of the collection of the associated primes of R.


1972 ◽  
Vol 13 (2) ◽  
pp. 159-163 ◽  
Author(s):  
P. F. Smith

Djabali [1] has proved that, if R is a right and left noetherian ring with an identity and if the proper prime ideals of R are maximal, then R has a right and left artinian two-sided quotient ring. Robson [5, Theorem 2.11] and Small [6, Theorem 2.13] have proved independently that, if Ris a commutative noetherian ring, then Rhas an artinian quotient ring if and only if the prime ideals of Rthat belong to the zero ideal are all minimal. We shall generalise these results by proving theTheorem. Let R be a right and left noetherian ring with a regular element. Then R has a right and left artinian two-sided quotient ring if and only if each prime ideal of R consisting of zero–divisors is minimal.


2013 ◽  
Vol 89 (1) ◽  
pp. 132-140 ◽  
Author(s):  
S. AKBARI ◽  
F. HEYDARI

AbstractLet $R$ be a ring and $Z(R)$ be the set of all zero-divisors of $R$. The total graph of $R$, denoted by $T(\Gamma (R))$ is a graph with all elements of $R$ as vertices, and two distinct vertices $x, y\in R$ are adjacent if and only if $x+ y\in Z(R)$. Let the regular graph of $R$, $\mathrm{Reg} (\Gamma (R))$, be the induced subgraph of $T(\Gamma (R))$ on the regular elements of $R$. In 2008, Anderson and Badawi proved that the girth of the total graph and the regular graph of a commutative ring are contained in the set $\{ 3, 4, \infty \} $. In this paper, we extend this result to an arbitrary ring (not necessarily commutative). We also prove that if $R$ is a reduced left Noetherian ring and $2\not\in Z(R)$, then the chromatic number and the clique number of $\mathrm{Reg} (\Gamma (R))$ are the same and they are ${2}^{r} $, where $r$ is the number of minimal prime ideals of $R$. Among other results, we show that if $R$ is a semiprime left Noetherian ring and $\mathrm{Reg} (R)$ is finite, then $R$ is finite.


2009 ◽  
Vol 08 (04) ◽  
pp. 565-580 ◽  
Author(s):  
M. BEHBOODI ◽  
R. BEYRANVAND ◽  
H. KHABAZIAN

We introduce the set S(R) of "strong zero-divisors" in a ring R and prove that: if S(R) is finite, then R is either finite or a prime ring. When certain sets of ideals have ACC or DCC, we show that either S(R) = R or S(R) is a union of prime ideals each of which is a left or a right annihilator of a cyclic ideal. This is a finite union when R is a Noetherian ring. For a ring R with |S(R)| = p, a prime number, we characterize R for S(R) to be an ideal. Moreover R is completely characterized when R is a ring with identity and S(R) is an ideal with p2 elements. We then consider rings R for which S(R)= Z(R), the set of zero-divisors, and determine strong zero-divisors of matrix rings over commutative rings with identity.


1984 ◽  
Vol 36 (1) ◽  
pp. 22-37 ◽  
Author(s):  
Surjeet Singh

A module M is called a serial module if the family of its submodules is linearly ordered under inclusion. A ring R is said to be serial if RR as well as RR are finite direct sums of serial modules. Nakayama [8] started the study of artinian serial rings, and he called them generalized uniserial rings. Murase [5, 6, 7] proved a number of structure theorems on generalized uniserial rings, and he described most of them in terms of quasi-matrix rings over division rings. Warfield [12] studied serial both sided noetherian rings, and showed that any such indecomposable ring is either artinian or prime. He further showed that a both sided noetherian prime serial ring is an (R:J)-block upper triangular matrix ring, where R is a discrete valuation ring with Jacobson radical J. In this paper we determine the structure of serial right noetherian rings (Theorem 2.11).


2015 ◽  
Vol 65 (1) ◽  
pp. 1-12
Author(s):  
M. J. Nikmehr ◽  
F. Heydari

AbstractLet R be a commutative ring and M be an R-module, and let Z(M) be the set of all zero-divisors on M. In 2008, D. F. Anderson and A. Badawi introduced the regular graph of R. In this paper, we generalize the regular graph of R to the M-regular graph of R, denoted by M-Reg(Γ(R)). It is the undirected graph with all M-regular elements of R as vertices, and two distinct vertices x and y are adjacent if and only if x+y ∈ Z(M). The basic properties and possible structures of M-Reg(Γ(R)) are studied. We determine the girth of the M-regular graph of R. Also, we provide some lower bounds for the independence number and the clique number of M- Reg(Γ(R)). Among other results, we prove that for every Noetherian ring R and every finitely generated module M over R, if 2 ∉ Z(M) and the independence number of M-Reg(Γ(R)) is finite, then R is finite.


Sign in / Sign up

Export Citation Format

Share Document