scholarly journals First Report of Root and Crown Rot of Wasabi (Wasabia japonica Matsum.) Caused by Phytophthora cryptogea in Michigan

Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1379-1379 ◽  
Author(s):  
L. L. Granke ◽  
B. R. Harlan ◽  
R. P. Naegele ◽  
M. K. Hausbeck

In September 2011, a Phytophthora sp. was isolated from wasabi (Wasabia japonica Matsum.) grown commercially in hydroponic culture in a large production facility in southwest Michigan. Approximately 20% of the plants were affected, resulting in serious losses for the grower. Plants exhibited severe wilting and root and crown rot, with soft water-soaked lesions on the crown and dark lesions on the roots. Small pieces of root tissue with dark lesions were excised and plated onto potato dextrose agar and unclarified V8 agar plates amended with 25 ppm of benomyl, 100 ppm of ampicillin, 30 ppm of rifampicin, and 100 ppm of pentachloronitrobenzene. Isolates of a Phytophthora sp. were recovered from root tissue. Isolates produced sporangia abundantly in culture. Sporangia averaged 48 μm long × 34 μm wide and were ellipsoid to ovoid, occasionally obpyriform, and were nonpapillate and noncaducous. Distinct hyphal swellings were noted and chlamydospores were observed rarely in culture. The isolate used for inoculations did not produce oospores alone in culture but was able to produce oospores when paired with an A1 culture of P. capsici and incubated in the dark. Oospores were not observed when the isolate was paired with an A2 culture of P. capsici. No growth was observed at 35°C, and the isolate was identified as Phytophthora cryptogea based on morphological and physiological traits. Pathogen identity was further confirmed using PCR primers specific to P. cryptogea (1). In addition, a BLAST search was conducted using the nucleotide database collection in GenBank comparing our isolate against Phytophthora spp., with 99% sequence similarity to P. cryptogea in two sequenced genes, beta tubulin and cytochrome c oxidase 1 (2). Sequences for the isolate were deposited in the GenBank database under accession numbers JX041520 and JX041521. To fulfill Koch's postulates, six small, potted wasabi seedlings were inoculated by placing 3 g of 1-month-old infested millet (100 g of millet, 72 ml of distilled water, 0.08 g of asparagine, and 10 7-mm diameter V8 agar plugs with actively growing P. cryptogea) onto the soil surface of each pot under coconut coir mulch. Plants were watered heavily after soil infestation and as needed thereafter. Three control plants were inoculated with sterile millet seed. The experiment was repeated once. Wilting was observed within 5 and 7 days, respectively, in the first and second experiment. All six inoculated plants were severely wilted within 25 and 56 days, respectively, except for a single plant in the second experiment that never wilted. Root and crown rot was observed on wilted plants and dark lesions could be observed on root tissue. P. cryptogea was recovered from five of the six plants inoculated in each experiment. None of the control plants in either experiment displayed symptoms of wilting, and the pathogen was not recovered from these plants when pieces of root tissue were excised and plated onto amended V8 agar. To our knowledge, this is the first report of P. cryptogea causing crown and root rot of wasabi. References: (1) D. Minerdi et al. Eur. J. Plant Pathol. 122:227, 2008. (2) L. M. Quesada-Ocampo et al. Phytopathology 101:1061, 2011.

Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 959-959 ◽  
Author(s):  
S. T. Koike ◽  
D. M. Henderson ◽  
J. D. MacDonald ◽  
M. S. Ali-Shtayeh

In 1996, commercial plantings of sage (Salvia officinalis) in the Salinas Valley in Monterey County, CA, were affected by a root and crown disease. Roots were necrotic, and crowns and lower stems turned black. Affected plants withered and died. A Phytophthora sp. was consistently isolated from roots and stems of the symptomatic plants. The species was identified as Phytophthora cryptogea based upon the formation of hyphal swellings, morphology of sporangia and oospores, and growth at cardinal temperatures (1). Pathogenicity of representative isolates was confirmed by applying 2 ml of a zoospore suspension (2.0 × 105 zoospores per ml) to roots and crowns of 3-month-old potted sage plants. After treatment, plants were placed for 24 h in shallow trays of water to saturate the root zone, then were removed from trays and incubated in a greenhouse. After 4 days, foliage of all inoculated plants began to wilt. After 7 days, plant crowns and stems turned black and the plants collapsed. P. cryptogea was reisolated and recharacterized from all plants. Control plants, which were treated with water and then handled in the same way as inoculated plants, did not develop any symptoms. The tests were repeated and the results were similar. This is the first report of P. cryptogea attacking commercial plantings of sage. The authors also detected this disease in experimental plantings of sage in Stanislaus County in 1990. Reference: (1) D. C. Erwin and O. K. Ribeiro. 1996. Phytophthora Diseases Worldwide. American Phytopathological Society, St. Paul, MN.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yaxing Li ◽  
Yangfan Feng ◽  
Cuiping Wu ◽  
Junxin Xue ◽  
Binbin Jiao ◽  
...  

During a survey of pathogenic oomycetes in Nanjing, China from June 2019 to October 2020, at least ten adjacent Rhododendron pulchrum plants at a Jiangjun Mountain scenic spot showed symptoms of blight, and crown and root discoloration . Symptomatic root tissues collected from three 6-year-old plants were rinsed with water, cut into 10-mm pieces, surface sterilized with 70% ethanol for 1 min, and plated onto 10% clarified V8 PARP agar (cV8A-PARP) containing pimaricin (20 mg/liter), ampicillin (125 mg/liter), rifampicin (10 mg/liter), and pentachloronitrobenzene (20 mg/liter). Four Pythium-like isolates were recovered after three days of incubation at 26°C, and purified using hyphal-tipping. Ten agar plugs (2×2 mm2) of each isolate were grown in 10 mL of 10% clarified V8 juice (cV8) in a 10 cm plate at 26°C for 3 days to produce mycelial mats, and then the cV8 was replaced with sterile water. To stimulate sporangial production, three to five drops of soil extract solution were added to each plate. Sporangia were terminal, ovoid to globose, and the size is 24 to 45.6 (mean 34.7) (n=10.8) in length x 23.6 to 36.0 (mean 29.8) (n=6.2) in width. Gametangia were not observed in cV8A or liquid media after 30 days. For colony morphology, the isolates were sub-cultured onto three solid microbial media (cV8A-PARP, potato dextrose agar, corn meal agar) . All isolates had identical morphological features in the three media. Complete ITS and partial LSU and cox2 gene regions were amplified using primer pairs ITS1/ITS4, NL1/NL4, and FM58/FM66 , respectively. The ITS, LSU, and cox2 sequences of isolate PC-dj1 (GenBank Acc. No. MW205746, MW208002, MW208003) were 100.00% (936/936 nt), 100.00% (772/772 nt), and 99.64% (554/556 nt) identical to those of JX985743, MT042003, and GU133521, respectively. We built a maximum-likelihood tree of Phytopythium species using the concatenated dataset (ITS, LSU, cox2) to observe interspecific differences. Based on the morphological characters and sequences, isolate PC-djl was identified as Phytopythium litorale . As the four isolates (PC-dj1, PC-dj2, PC-dj3 and PC-dj4) tested had identical morphological characters and molecular marker sequences, the pathogenicity of the representative isolate, PC-dj1, was tested using two inoculation methods on ten one-year-old R. pulchrum plants. For the first inoculation method, plants were removed from the pot, and their roots were rinsed with tap water to remove the soil. Each of these plants was placed in a glass flask containing 250 mL of sterile water and 10 blocks (10 x 10 mm2) of mycelial mats harvested from a three-day-old culture of P. litorale, while the other plant was placed in sterile water as a control, and incubated at 26°C. After three days, symptoms including crown rot, root rot and blight was observed on the inoculated plants whereas the control remained asymptomatic. For the second inoculation method, ten plants were dug up to expose the root ball. Ten three-day-old cV8A plugs (5×5 mm2) from a PC-dj1 culture or sterile cV8A plugs were evenly insert into the root ball of a plant before it was planted back into the original pots. Both plants were maintained in a growth chamber set at 26°C with a 12/12 h light/dark cycle and irrigated as needed. After 14 to 21 days, the inoculated plant had symptoms resembling those in the field , while the control plant remained asymptomatic. Each inoculation method was repeated at triplicate and the outcomes were identical. Phytopythium isolates with morphological features and sequences identical to those of PC-dj1 were recovered from rotted crown and root tissues of all inoculated plants. Previously, P. litorale was found causing diseases of apple and Platanus orientalis in Turkey, fruit rot and seedling damping-off of yellow squash in southern Georgia, USA. This is the first report of this species causing crown and root rot on R. pulchrum, an important ornamental plant species in China. Additional surveys are ongoing to determine the distribution of P. litorale in the city of Nanjing.


Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2959-2959 ◽  
Author(s):  
G. Gilardi ◽  
F. Bergeretti ◽  
M. L. Gullino ◽  
A. Garibaldi

Plant Disease ◽  
2006 ◽  
Vol 90 (9) ◽  
pp. 1260-1260 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
D. Minerdi ◽  
M. L. Gullino

Penstemon barbatus (Cav.) Roth (synonym Chelone barbata), used in parks and gardens and sometimes grown in pots, is a plant belonging to the Scrophulariaceae family. During the summers of 2004 and 2005, symptoms of a root rot were observed in some private gardens located in Biella Province (northern Italy). The first symptoms resulted in stunting, leaf discoloration followed by wilt, root and crown rot, and eventually, plant death. The diseased tissue was disinfested for 1 min in 1% NaOCl and plated on a semiselective medium for Oomycetes (4). The microorganism consistently isolated from infected tissues, grown on V8 agar at 22°C, produced hyphae with a diameter ranging from 4.7 to 5.2 μm. Sporangia were papillate, hyaline, measuring 43.3 to 54.4 × 26.7 to 27.7 μm (average 47.8 × 27.4 μm). The papilla measured from 8.8 to 10.9 μm. These characteristics were indicative of a Phytophthora species. The ITS region (internal transcribed spacer) of rDNA was amplified using primers ITS4/ITS6 (3) and sequenced. BLASTn analysis (1) of the 800 bp obtained showed a 100% homology with Phytophthora citrophthora (R. & E. Sm.) Leonian. The nucleotide sequence has been assigned GenBank Accession No. DQ384611. For pathogenicity tests, the inoculum of P. citrophthora was prepared by growing the pathogen on autoclaved wheat and hemp kernels (2:1) at 25°C for 20 days. Healthy plants of P. barbatus cv. Nano Rondo, 6 months old, were grown in 3-liter pots (one plant per pot) using a steam disinfested substrate (peat/pomix/pine bark/clay 5:2:2:1) in which 200 g of kernels per liter of substrate were mixed. Noninoculated plants served as control treatments. Three replicates were used. Plants were maintained at 15 to 20°C in a glasshouse. The first symptoms, similar to those observed in the gardens, developed 21 days after inoculation, and P. citrophthora was consistently reisolated from infected plants. Noninoculated plants remained healthy. The pathogenicity test was carried out twice with similar results. A nonspecified root and crown rot of Penstemon spp. has been reported in the United States. (2). To our knowledge, this is the first report of P. citrophthora on P. barbatus in Italy as well as in Europe. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997 (2) F. E. Brooks and D. M. Ferrin. Plant Dis. 79:212, 1995. (3) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (4) H. Masago et al. Phytopathology 67:425, 1977.


Plant Disease ◽  
2000 ◽  
Vol 84 (11) ◽  
pp. 1250-1250 ◽  
Author(s):  
M. E. Matheron ◽  
M. Porchas

In March 2000, plants began to die within two garbanzo (Cicer arietinum L.) fields about 48 km apart in southwestern Arizona. Initial symptoms included wilting of leaves and stem necrosis on individual branches, followed by entire plant necrosis and death. White mycelium was present on plant stems near the soil surface. In one field, small black irregularly shaped sclerotia (1 mm in diameter) were present on the infected stem surface along with the white mycelia, whereas in the other field the associated sclerotia were of similar shape but larger (5 to 6 mm in diameter). Isolation from diseased garbanzo stem tissue from the respective fields yielded Sclerotinia minor, which produced small sclerotia when cultured on potato-dextrose agar and S. sclerotiorum, which produced the typical larger sclerotia of this species. To fulfill Koch's postulates, healthy plants and associated soil from a garbanzo field with no evidence of infection by Sclerotinia were removed with a shovel and transferred into a series of 8-liter plastic pots. After transporting back to the laboratory, some of the plants were inoculated by wounding stems with a 5-mm-diameter cork borer, placing an agar disk containing either S. minor or S. sclerotiorum onto each wound, securing the agar disk to the stem with plastic tape, then incubating the plants at 25°C for 7 days. Control plants were treated similarly except that agar disks did not contain Sclerotinia. Stems inoculated with S. minor or S. sclerotiorum developed symptoms of wilt and necrosis, including the appearance of white mycelium and sclerotia on the stem surface, whereas control plants remained healthy. S. minor or S. sclerotiorum were recovered from garbanzo stems inoculated with the respective species of the pathogen. Sclerotinia leaf drop, which can be caused by S. minor or S. sclerotiorum on lettuce in Arizona, had been observed in both fields previously. Garbanzo fields in Arizona usually are watered by furrow irrigation. Disease was most severe in areas of the garbanzo fields that were heavily irrigated with resultant wetting of tops of plant beds. Proper management of irrigation water and avoidance of establishing a garbanzo planting in fields following lettuce could help reduce future losses from these pathogens. S. minor previously had been reported as a pathogen on Cicer arietinum from the island of Sardinia (2); however, this is apparently the first report of the pathogen on garbanzo other than in Sardinia. S. sclerotiorum has been reported as a pathogen on this host in several countries including the United States (California) (1) but not previously in the state of Arizona. References: (1) I. W. Buddenhagen, F. Workneh, and N. A. Bosque-Perez. Int. Chickpea Newsl. 19:9–10, 1988. (2) F. Marras. Rev. Appl. Mycol. 43:112, 1964.


Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 691-696 ◽  
Author(s):  
Jeannette Guajardo ◽  
Sebastián Saa ◽  
Natalia Riquelme ◽  
Gregory Browne ◽  
Cristian Youlton ◽  
...  

English (Persian) walnut (Juglans regia) trees affected by root and crown rot were surveyed in five regions of central Chile between 2015 and 2017. In each region, nine orchards, ranging from 1 to 21 years old, were randomly selected and inspected for incidence and severity of tree decline associated with crown and root rot. Soil and symptomatic crown and root tissues were collected and cultured in P5ARP semiselective medium to isolate potential oomycete pathogens, which were identified through morphology and molecularly using ITS sequences in the rDNA gene and beta tubulin gene. The most frequently isolated species was Phytophthora cinnamomi. Pathogenicity tests were conducted with representative oomycete isolates. P. cinnamomi, P. citrophthora, and Pythium ultimum were all pathogenic in J. regia. Nevertheless, only P. cinnamomi and P. citrophthora were pathogenic to English walnut. Py. ultimum caused limited levels of root damage to English walnut seedlings. Our research indicates that as the Chilean walnut industry has expanded, so have walnut crown and root rots induced by oomycetes.


Plant Disease ◽  
2001 ◽  
Vol 85 (11) ◽  
pp. 1207-1207
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
G. Gilardi ◽  
M. L. Gullino

Gazania sp. hybrid is produced in pots in the Albenga Region of northern Italy for export to central and northern Europe. During fall 2000 to spring 2001, sudden wilt was observed in commercial plantings of this ornamental. Initial symptoms included stem necrosis at the soil level and yellowing and tan discoloration of leaves. As stem necrosis progressed, infected plants wilted and died. Wilt followed by soft rot occurred within a few days on young plants after the first leaf symptoms. Necrotic tissues became covered with white mycelia that produced dark, spherical (2 to 6 mm diameter) sclerotia. Sclerotinia sclerotiorum was consistently recovered from infected stem pieces of Gazania disinfested for 1 min in 1% NaOCl, plated on potato dextrose agar amended with streptomycin sulfate at 100 mg/liter. Pathogenicity of three fungal isolates was confirmed by inoculating 45- to 60-day-old plants grown in containers (14 cm diameter). Inoculum that consisted of wheat kernels infested with mycelium and sclerotia of each isolate was placed on the soil surface around the base of each plant. Noninoculated plants served as controls. All plants were maintained outdoors where temperatures ranged between 8 and 15°C. Inoculated plants developed symptoms of leaf yellowing, followed by wilt, within 7 to 10 days, while control plants remained symptomless. White mycelia and sclerotia developed on infected tissues, and S. sclerotiorum was reisolated from inoculated plants. To our knowledge, this is the first report of wilt of Gazania sp. hybrid caused by S. sclerotiorum in Italy. A crown rot of Gazania caused by S. sclerotiorum has been reported from California in the United States(1). Reference: (1) V. M. Muir and A. H. McCain. Calif. Plant Pathol. 16:1, 1973.


Plant Disease ◽  
2021 ◽  
Author(s):  
Monica Mezzalama ◽  
Vladimiro Guarnaccia ◽  
Ilaria Martino ◽  
Giulia Tabome ◽  
Maria Lodovica GULLINO

Maize (Zea mays L.) is a cereal crop of great economic importance in Italy; production is currently of 62,587,469 t, with an area that covers 628,801 ha, concentrated in northern Italy (ISTAT 2020). Fusarium species are associated with root and crown rot causing failures in crop establishment under high soil moisture. In 2019 maize seedlings collected in a farm located in San Zenone degli Ezzelini (VI, Italy) showed root and crown rot symptoms with browning of the stem tissues, wilting of the seedling, and collapsing due to the rotting tissues at the base of the stem. The incidence of diseased plants was approximately 15%. Seedlings were cleaned thoroughly from soil residues under tap water. Portions (about 3-5 mm) of tissue from roots and crowns of the diseased plants were cut and surface disinfected with a water solution of NaClO at 0.5% for 2 minutes and rinsed in sterile H20. The tissue fragments were plated on Potato Dextrose Agar (PDA) amended with 50 mg/l of streptomycin sulfate and incubated for 48-72 hours at 25oC. Over the 80 tissue fragments plated, 5% were identified as Fusarium verticillioides, 60% as Fusarium spp., 35% developed saprophytes. Fusarium spp. isolates that showed morphological characteristics not belonging to known pathogenic species on maize were selected and used for further investigation while species belonging to F. oxysporum were discarded. Single conidia of the Fusarium spp. colonies were cultured on PDA and Carnation Leaf Agar (CLA) for pathogenicity tests, morphological and molecular identification. The colonies showed white to pink, abundant, densely floccose to fluffy aerial mycelium. Colony reverse showed light violet pigmentation, in rings on PDA. On CLA the isolates produced slightly curved macronidia with 3 septa 28.1 - 65.5 µm long and 2.8-6.3 µm wide (n=50). Microconidia were cylindrical, aseptate, 4.5 -14.0 µm long and 1.5-3.9 µm wide (n=50). Spherical clamydospores were 8.8 ± 2.5 µm size (n=30), produced singly or in pairs on the mycelium, according to the description by Skovgaard et al. (2003) for F. commune. The identity of two single-conidia strains was confirmed by sequence comparison of the translation elongation factor-1α (tef-1α), and RNA polymerase II subunit (rpb2) gene fragments (O’Donnell et al. 2010). BLASTn searches of GenBank, and Fusarium-ID database, using the partial tef-1α (MW419921, MW419922) and rpb2 (MW419923, MW419924) sequences of representative isolate DB19lug07 and DB19lug20, revealed 99% identity for tef-1α and 100% identity to F. commune NRRL 28387(AF246832, AF250560). Pathogenicity tests were carried out by suspending conidia from a 10-days old culture on PDA in sterile H2O to 5×104 CFU/ml. Fifty seeds were immersed in 50 ml of the conidial suspension of each isolate for 24 hours and in sterile water (Koch et al. 2020). The seeds were drained, dried at room temperature, and sown in trays filled with a steamed mix of white peat and perlite, 80:20 v/v, and maintained at 25°C and RH of 80-85% for 14 days with 12 hours photoperiod. Seedlings were extracted from the substrate, washed under tap water, and observed for the presence of root and crown rots like the symptoms observed on the seedlings collected in the field. Control seedlings were healthy and F. commune was reisolated from the symptomatic ones and identified by resequencing of tef-1α gene. F. commune has been already reported on maize (Xi et al. 2019) and other plant species, like soybean (Ellis et al. 2013), sugarcane (Wang et al. 2018), potato (Osawa et al. 2020), indicating that some attention must be paid in crop rotation and residue management strategies. To our knowledge this is the first report of F. commune as a pathogen of maize in Italy. References Ellis M L et al. 2013. Plant Disease, 97, doi: 10.1094/PDIS-07-12-0644-PDN. ISTAT. 2020. http://dati.istat.it/Index.aspx?QueryId=33702. Accessed December 28, 2020. Koch, E. et al. 2020. Journal of Plant Diseases and Protection. 127, 883–893 doi: 10.1007/s41348-020-00350-w O’Donnell K et al. 2010. J. Clin. Microbiol. 48:3708. https://doi.org/10.1128/JCM.00989-10 Osawa H et al. 2020. Journal of General Plant Pathology, doi.org/10.1007/s10327-020-00969-5. Skovgaard K 2003. Mycologia, 95:4, 630-636, DOI: 10.1080/15572536.2004.11833067. Wang J et al. 2018. Plant Disease, 102, doi/10.1094/PDIS-07-17-1011-PDN Xi K et al. 2019. Plant Disease, 103, doi/10.1094/PDIS-09-18-1674-PDN


Sign in / Sign up

Export Citation Format

Share Document