scholarly journals Angiotensin II in the presence of an AT1 receptor blockade potentiates the coronary vasodilation mediated by bradykinin in the isolated rat heart

2006 ◽  
Vol 20 (5) ◽  
Author(s):  
Jingsong Fan ◽  
Lufei Hu ◽  
Clare Zimmitti ◽  
Damian Matera ◽  
Steven Weldon ◽  
...  
2001 ◽  
Vol 169 (1) ◽  
pp. 177-183 ◽  
Author(s):  
K Terui ◽  
A Higashiyama ◽  
N Horiba ◽  
KI Furukawa ◽  
S Motomura ◽  
...  

Corticotropin-releasing factor (CRF) has a coronary vasodilator effect and a positive inotropic effect on the isolated rat heart. Recently, expression of CRF receptor type 2 (CRF-R2) has been demonstrated in the heart. In addition, urocortin (Ucn), a new member of the CRF family, has been reported to have much greater affinity for CRF-R2 than CRF. It is suggested that the cardiac effects of Ucn may be more potent than those of CRF. We compared the effect of Ucn with that of CRF on isolated rat heart. The effects of Ucn were then analyzed to determine whether these effects were mediated by CRF receptors and/or any other mediators under the following conditions: perfusion buffer containing (1) alpha-helical CRF 9-41, (2) indomethacin, (3) N(G)-nitro-l -arginine methylester and (4) propranolol. Ucn exhibited a greater effect with a longer duration of action than CRF. Indomethacin significantly attenuated the vasodilator effects of Ucn (P<0.05). CRF receptor antagonist diminished both coronary vasodilation and the positive inotropic effects of Ucn (P<0.05). These results suggest that the cardiac effects of Ucn may be mediated by a CRF receptor, and prostaglandins may be involved in the vasodilator effect.


2012 ◽  
Vol 75 (16-17) ◽  
pp. 948-959 ◽  
Author(s):  
Roger Lyrio dos Santos ◽  
Priscila Lang Podratz ◽  
Gabriela Cavati Sena ◽  
Vicente Sathler Delgado Filho ◽  
Pedro Francisco Iguatemy Lopes ◽  
...  

2007 ◽  
Vol 42 (6) ◽  
pp. S183 ◽  
Author(s):  
M. Belal Aljabri ◽  
Britt N. Fuglesteg ◽  
Thomas V. Andreasen ◽  
Kirsti Ytrehus

2013 ◽  
Vol 125 (9) ◽  
pp. 449-459 ◽  
Author(s):  
Álvaro P. S. Souza ◽  
Deny B. S. Sobrinho ◽  
Jônathas F. Q. Almeida ◽  
Gisele M. M. Alves ◽  
Larissa M. Macedo ◽  
...  

The aim of the present study was to investigate the coronary effects of Ang-(1–7) [angiotensin-(1–7)] in hypertrophic rat hearts. Heart hypertrophy was induced by abdominal aorta CoA (coarctation). Ang-(1–7) and AVE 0991, a non-peptide Mas-receptor agonist, at picomolar concentration, induced a significant vasodilation in hearts from sham-operated rats. These effects were blocked by the Mas receptor antagonist A-779. Pre-treatment with L-NAME (NG-nitro-L-arginine methyl ester) or ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinozalin-1-one) [NOS (NO synthase) and soluble guanylate cyclase inhibitors respectively] also abolished the effect of Ang-(1–7) in control hearts. The coronary vasodilation produced by Ang-(1–7) and AVE 0991 was completely blunted in hypertrophic hearts. Chronic oral administration of losartan in CoA rats restored the coronary vasodilation effect of Ang-(1–7). This effect was blocked by A-779 and AT2 receptor (angiotensin II type 2 receptor) antagonist PD123319. Acute pre-incubation with losartan also restored the Ang-(1–7)-induced, but not BK (bradykinin)-induced, coronary vasodilation in hypertrophic hearts. This effect was inhibited by A-779, PD123319 and L-NAME. Chronic treatment with losartan did not change the protein expression of Mas and AT2 receptor and ACE (angiotensin-converting enzyme) and ACE2 in coronary arteries from CoA rats, but induced a slight increase in AT2 receptor in aorta of these animals. Ang-(1–7)-induced relaxation in aortas from sham-operated rats was absent in aortas from CoA rats. In vitro pre-treatment with losartan restored the Ang-(1–7)-induced relaxation in aortic rings of CoA rats, which was blocked by the Mas antagonist A-779 and L-NAME. These data demonstrate that Mas is strongly involved in coronary vasodilation and that AT1 receptor (angiotensin II type 1 receptor) blockade potentiates the vasodilatory effects of Ang-(1–7) in the coronary beds of pressure-overloaded rat hearts through NO-related AT2- and Mas-receptor-dependent mechanisms. These data suggest the association of Ang-(1–7) and AT1 receptor antagonists as a potential therapeutic avenue for coronary artery diseases.


Author(s):  
Tetyana V Shimanskaya ◽  
Yulia V. Goshovska ◽  
Olena M. Semenykhina ◽  
Vadim F. Sagach

Sign in / Sign up

Export Citation Format

Share Document