mas receptor
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 84)

H-INDEX

35
(FIVE YEARS 9)

Author(s):  
Xiaoliang Jiang ◽  
Huadong Li ◽  
Yong Liu ◽  
Linlin Bao ◽  
Lingjun Zhan ◽  
...  

AbstractAngiotensin-converting enzyme 2 (ACE2) is required for the cellular entry of the severe acute respiratory syndrome coronavirus 2. ACE2, via the Ang-(1-7)-Mas-R axis, is part of the antihypertensive and cardioprotective effects of the renin-angiotensin system. We studied hospitalized COVID-19 patients with hypertension and hypertensive human(h) ACE2 transgenic mice to determine the outcome of COVID-19 with or without AT1 receptor (AT1R) blocker treatment. The severity of the illness and the levels of serum cardiac biomarkers (CK, CK-BM, cTnI), as well as the inflammation markers (IL-1, IL-6, CRP), were lesser in hypertensive COVID-19 patients treated with AT1R blockers than those treated with other antihypertensive drugs. Hypertensive hACE2 transgenic mice, pretreated with AT1R blocker, had increased ACE2 expression and SARS-CoV-2 in the kidney and heart, 1 day post-infection. We conclude that those hypertensive patients treated with AT1R blocker may be at higher risk for SARS-CoV-2 infection. However, AT1R blockers had no effect on the severity of the illness but instead may have protected COVID-19 patients from heart injury, via the ACE2-angiotensin1-7-Mas receptor axis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aya M. Mustafa ◽  
Mostafa A. Rabie ◽  
Hala F. Zaki ◽  
Aya M. Shaheen

GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) biosynthesis; the latter is an essential factor for iNOS activation that contributes neuronal loss in Huntington’s disease (HD). The aim of the study was to investigate the neuroprotective effect of 2,4-diamino-6-hydroxypyrimidine (DAHP), GTPCH I enzyme inhibitor, against neuronal loss in 3-nitropropinic acid (3-NP)-induced HD in rats and to reveal the possible involved mechanisms mediated through PI3K/Akt axis and its correlation to Mas receptor (MasR). Rats received 3-NP (10 mg/kg/day; i.p.) with or without administration of DAHP (0.5 g/kg/day; i.p.) or wortmannin (WM), a PI3K inhibitor, (15 μg/kg/day; i.v.) for 14 days. DAHP improved cognitive, memory, and motor abnormalities induced by 3-NP, as confirmed by striatal histopathological specimens and immunohistochemical examination of GFAP. Moreover, DAHP treatment inhibited GTPCH I activity, resulting in decreased BH4 levels and iNOS activation. Also, DAHP upregulated the protein expression of survival protein; p85/p55 (pY458/199)-PI3K and pS473-Akt that, in turn, boosted the activation of striatal neurotrophic factors and receptor, pS133-CREB, BDNF and pY515-TrKB, which positively affect MasR protein expression and improve mitochondrial dysfunction, as indicated by enhancing both SDH and PGC-1α levels. Indeed, DAHP attenuates oxidative stress by increasing SOD activity and Nrf2 expression in addition to reducing neuro-inflammatory status by inhibiting NF-κB p65 and TNF-α expression. Interestingly, all the previous effects were blocked by co-administration of WM with DAHP. In conclusion, DAHP exerts neuroprotective effect against neuronal loss induced by 3-NP administration via inhibition of GTPCH I and iNOS activity and activation of MasR/PI3K/Akt/CREB/BDNF/TrKB axis besides its antioxidant and anti-inflammatory effect.


2021 ◽  
Vol 22 (24) ◽  
pp. 13678
Author(s):  
Giovanna Castoldi ◽  
Raffaella Carletti ◽  
Silvia Ippolito ◽  
Andrea Stella ◽  
Gianpaolo Zerbini ◽  
...  

Compound 21 (C21), an AT2 receptor agonist, and Angiotensin 1-7 (Ang 1-7), through Mas receptor, play an important role in the modulation of the protective arm of the renin-angiotensin system. The aim of this study was to investigate in an experimental model of angiotensin II-dependent hypertension whether the activation of the potentially protective arm of the renin-angiotensin system, through AT2 or Mas receptor stimulation, counteracts the onset of myocardial fibrosis and hypertrophy, and whether these effects are mediated by inflammatory mechanism and/or sympathetic activation. Sprague Dawley rats (n = 67) were treated for 1 (n = 25) and 4 (n = 42) weeks and divided in the following groups: (a) Angiotensin II (Ang II, 200 ng/kg/min, osmotic minipumps, sub cutis); (b) Ang II+Compound 21 (C21, 0.3 mg/kg/day, intraperitoneal); (c) Ang II+Ang 1-7 (576 µg/kg/day, intraperitoneal); (d) Ang II+Losartan (50 mg/kg/day, per os); (e) control group (physiological saline, sub cutis). Systolic blood pressure was measured by tail cuff method and, at the end of the experimental period, the rats were euthanized and the heart was excised to evaluate myocardial fibrosis, hypertrophy, inflammatory cell infiltration and tyrosine hydroxylase expression, used as marker of sympathetic activity. Ang II caused a significant increase of blood pressure, myocardial interstitial and perivascular fibrosis and myocardial hypertrophy, as compared to control groups. C21 or Ang 1-7 administration did not modify the increase in blood pressure in Ang II treated rats, but both prevented the development of myocardial fibrosis and hypertrophy. Treatment with losartan blocked the onset of hypertension and myocardial fibrosis and hypertrophy in Ang II treated rats. Activation of AT2 receptors or Mas receptors prevents the onset of myocardial fibrosis and hypertrophy in Ang II-dependent hypertension through the reduction of myocardial inflammatory cell infiltration and tyrosine hydroxylase expression. Unlike what happens in case of treatment with losartan, the antifibrotic and antihypertrophic effects that follow the activation of the AT2 or Mas receptors are independent on the modulation of blood pressure.


2021 ◽  
Vol 22 (23) ◽  
pp. 12800
Author(s):  
Tomas Rajtik ◽  
Peter Galis ◽  
Linda Bartosova ◽  
Ludovit Paulis ◽  
Eva Goncalvesova ◽  
...  

Alternative branches of the classical renin–angiotensin–aldosterone system (RAS) represent an important cascade in which angiotensin 2 (AngII) undergoes cleavage via the action of the angiotensin-converting enzyme 2 (ACE2) with subsequent production of Ang(1-7) and other related metabolites eliciting its effects via Mas receptor activation. Generally, this branch of the RAS system is described as its non-canonical alternative arm with counterbalancing actions to the classical RAS, conveying vasodilation, anti-inflammatory, anti-remodeling and anti-proliferative effects. The implication of this branch was proposed for many different diseases, ranging from acute cardiovascular conditions, through chronic respiratory diseases to cancer, nonetheless, hypoxia is one of the most prominent common factors discussed in conjugation with the changes in the activity of alternative RAS branches. The aim of this review is to bring complex insights into the mechanisms behind the various forms of hypoxic insults on the activity of alternative RAS branches based on the different duration of stimuli and causes (acute vs. intermittent vs. chronic), localization and tissue (heart vs. vessels vs. lungs) and clinical relevance of studied phenomenon (experimental vs. clinical condition). Moreover, we provide novel insights into the future strategies utilizing the alternative RAS as a diagnostic tool as well as a promising pharmacological target in serious hypoxia-associated cardiovascular and cardiopulmonary diseases.


Author(s):  
René Lafont ◽  
Maria Serova ◽  
Blaise Didry-Barca ◽  
Sophie Raynal ◽  
Louis Guibout ◽  
...  

20-Hydroxyecdysone (20E) is a steroid hormone that plays a key role in insect development through nuclear ecdysteroid receptors (EcR/RXR complex) and at least one membrane GPCR receptor (DopEcR). It also displays numerous pharmacological effects in mammals, where its mechanism of action is still debated, involving either an unidentified GPCR or the estrogen ERβ receptor. The goal of this study was to better understand 20E mechanism of action in mammals. A mouse myoblast cell line (C2C12) and the gene expression of myostatin (a negative regulator of muscle growth) was used as a reporter system of anabolic activity. Experiments using protein-bound 20E established the involvement of a membrane receptor. 20E-like effects were also observed with angiotensin-(1-7), the endogenous ligand of Mas. Additionally, the effect on myostatin gene expression was abolished by Mas receptor knock-down using small interfering RNA (siRNA) or pharmacological inhibitors. 17β-Estradiol (E2) also inhibited myostatin gene expression, but protein-bound E2 was inactive, and E2 activity was not abolished by angiotensin-(1-7) antagonists. A mechanism involving cooperation between the Mas receptor and a membrane-bound palmitoylated estrogen receptor is proposed. The possibility to activate the Mas receptor with a safe steroid molecule is consistent with the pleiotropic pharmacological effects of ecdysteroids in mammals and, indeed, the proposed mechanism may explain the close similarity between angiotensin-(1-7)’s and 20E’s effects. Our findings open up many possible therapeutic developments involving stimulation of the protective arm of the renin-angiotensin-aldosterone system (RAAS) with 20E.


2021 ◽  
Author(s):  
Virendra Tiwari ◽  
Jitendra Singh ◽  
Priya Tiwari ◽  
Swati Chaturvedi ◽  
Shivangi Gupta ◽  
...  

Abstract Activation of the renin-angiotensin system (RAS), mediated by Angiotensin converting enzyme/Angiotensin II/Angiotensin receptor-1 (ACE/Ang II/AT1 R) axis elicits amyloid pathology, induces neurodegeneration and cognitive impairment leading to Alzheimer's disease (AD). On the contrary, Angiotensin converting enzyme2 (ACE2) produces Ang -(1-7) which binds with the Mas receptor and counters ACE/Ang II/AT1 axis. To date, the involvement of ACE2/Ang-(1–7)/MasR axis in etiology and progression of AD largely remains to be elucidated. Hence, the present study is aimed to determine the role of ACE2/Ang-(1–7)/MasR axis in STZ induced model of neurodegeneration using Diminazene aceturate (DIZE), an ACE2 activator in both in vitro/in vivo experimental conditions. Interestingly, ROS content and oxidative stress burden in N2A cells were found to be attenuated along with a decrease in enzymatic activity of AChE following DIZE treatment. In contrast, activation of this axis led to altered mitochondrial membrane potential (MMP) in addition to ablated intracellular Ca2+ influx. ACE2/Ang-(1–7)/MasR axis activation further resulted in reduction of astrogliosis as indicated by decreased intensity of NFκB and dwindled expression of its downstream NLRP3 cascade signaling molecules. These results were confirmed by using a selective inhibitor of ACE-2, MLN-4760, which reversed the protective effects of ACE2 activation by DIZE. Subsequently, treatment with DIZE in STZ induced rat model of AD prevented cognitive impairment and progression of amyloid pathology. Therefore, the involvement of ACE2/Ang-(1–7)/Mas axis suggests that it could be further explored as a potential pathway in AD, owing to its inhibitory effect on inflammation/astrogliosis and restoring cognitive functions.


2021 ◽  
pp. 1-25
Author(s):  
Negar Firouzabadi ◽  
Parisa Farshadfar ◽  
Maral Haghnegahdar ◽  
Ali Alavi-Shoushtari ◽  
Vahid Ghanbarinezhad

Abstract Backgrounds Identification of a new axis of angiotensin converting enzyme 2 (ACE2)/angiotensin (1–7)/Mas receptor, in the renin-angiotensin system (RAS), has opened a new insight regarding the role of RAS and angiotensin in higher brain functions. ACE 2 catabolizes angiotensin II and produces angiotensin (1-7), an agonist of Mas receptor. Mice lacking the Mas receptor (angiotensin1-7 receptor) exhibit anxiety-like behaviors. The present study was conducted to test the hypothesis of the involvement of ACE2 genetic variant (G8790A) on response to Selective Serotonin Reuptake Inhibitors (SSRIs). Methods In a randomized control trial, two hundred newly diagnosed Iranian patients with major depressive disorder (MDD) completed 6 weeks of fluoxetine or sertraline treatment. Patients with a reduction of 50% or more in the Hamilton Rating Scale for Depression (HAM-D) score were considered responsive to treatment. G8790A polymorphism was determined in extracted DNAs using restriction fragment length polymerase chain reaction (PCR-RFLP) method. Results The A allele as well as AA and GA genotypes were significantly associated with better response to SSRIs (P=0.008; OR= 3.4; 95%CI=1.4-8.5 and P=0.027; OR=3.3, 95%CI=1.2-9.2 respectively). Moreover, patients with GA and AA genotypes responded significantly better to sertraline (P=0.0002; OR=9.1; 95%CI=2.4-33.7). The A allele was significantly associated with better response to sertraline (P=0.0001; OR=7.6; 95%CI=2.5-23.3). Conclusions In conclusion our results confirm the role of G8790A in response to some SSRIs.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Bruno Vecchiatto ◽  
Rafael C. da Silva ◽  
Talita S. Higa ◽  
Cynthia R. Muller ◽  
Anna Laura V. Américo ◽  
...  

Abstract Background We investigate the effect of aerobic physical training (APT) on muscle morphofunctional markers and Angiotensin Converting Enzyme 2/Angiotensin 1-7/Mas receptor (ACE2/Ang 1-7/Mas) axis in an obesity-linked insulin resistance (IR) animal model induced by cafeteria diet (CAF). Methods Male C57BL/6J mice were assigned into groups CHOW-SED (chow diet, sedentary; n = 10), CHOW-TR (chow diet, trained; n = 10), CAF-SED (n = 10) and CAF-TR (n = 10). APT consisted in running sessions of 60 min at 60% of maximal speed, 5 days per week for 8 weeks. Results Trained groups had lower body weight and adiposity compared with sedentary groups. CAF-TR improved the glucose and insulin tolerance tests compared with CAF-SED group (AUC = 28.896 ± 1589 vs. 35.200 ± 1076 mg dL−1 120 min−1; kITT = 4.1 ± 0.27 vs. 2.5 ± 0.28% min−1, respectively). CHOW-TR and CAF-TR groups increased exercise tolerance, running intensity at which VO2 max was reached, the expression of p-AMPK, p-ACC and PGC1-α proteins compared with CHOW-SED and CAF-SED. Mithocondrial protein expression of Mfn1, Mfn2 and Drp1 did not change. Lipid deposition reduced in CAF-TR compared with CAF-SED group (3.71 vs. 5.53%/area), but fiber typing, glycogen content, ACE2 activity, Ang 1-7 concentration and Mas receptor expression did not change. Conclusions The APT prevents obesity-linked IR by modifying the skeletal muscle phenotype to one more oxidative independent of changes in the muscle ACE2/Ang 1-7/Mas axis.


Life Sciences ◽  
2021 ◽  
pp. 119792
Author(s):  
Juliana Fabiana Gregório ◽  
Giselle Santos Magalhães ◽  
Maria Glória Rodrigues-Machado ◽  
Kézia Emanoeli Ramos Gonzaga ◽  
Daisy Motta-Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document