scholarly journals PVN ‐ projecting MnPO neurons are involved in blood pressure and sympathetic nerve activity regulation in CIH hypertension

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Caroline Gusson Shimoura ◽  
Obed Paundralingga ◽  
J. Cunningham
1976 ◽  
Vol 38 (6) ◽  
pp. 21-29 ◽  
Author(s):  
W V Judy ◽  
A M Watanabe ◽  
D P Henry ◽  
H R Besch ◽  
W R Murphy ◽  
...  

1986 ◽  
Vol 40 ◽  
pp. 71
Author(s):  
Hiroko Togashi ◽  
Masaru Minami ◽  
Machiko Sano ◽  
Mitsuhiro Yoshioka ◽  
Iwao Saito ◽  
...  

2010 ◽  
Vol 299 (3) ◽  
pp. H925-H931 ◽  
Author(s):  
G. S. Gilmartin ◽  
M. Lynch ◽  
R. Tamisier ◽  
J. W. Weiss

Chronic intermittent hypoxia (CIH) is thought to be responsible for the cardiovascular disease associated with obstructive sleep apnea (OSA). Increased sympathetic activation, altered vascular function, and inflammation are all putative mechanisms. We recently reported (Tamisier R, Gilmartin GS, Launois SH, Pepin JL, Nespoulet H, Thomas RJ, Levy P, Weiss JW. J Appl Physiol 107: 17–24, 2009) a new model of CIH in healthy humans that is associated with both increases in blood pressure and augmented peripheral chemosensitivity. We tested the hypothesis that exposure to CIH would also result in augmented muscle sympathetic nerve activity (MSNA) and altered vascular reactivity contributing to blood pressure elevation. We therefore exposed healthy subjects between the ages of 20 and 34 yr ( n = 7) to 9 h of nocturnal intermittent hypoxia for 28 consecutive nights. Cardiovascular and hemodynamic variables were recorded at three time points; MSNA was collected before and after exposure. Diastolic blood pressure (71 ± 1.3 vs. 74 ± 1.7 mmHg, P < 0.01), MSNA [9.94 ± 2.0 to 14.63 ± 1.5 bursts/min ( P < 0.05); 16.89 ± 3.2 to 26.97 ± 3.3 bursts/100 heartbeats (hb) ( P = 0.01)], and forearm vascular resistance (FVR) (35.3 ± 5.8 vs. 55.3 ± 6.5 mmHg·ml−1·min·100 g tissue, P = 0.01) all increased significantly after 4 wk of exposure. Forearm blood flow response following ischemia of 15 min (reactive hyperemia) fell below baseline values after 4 wk, following an initial increase after 2 wk of exposure. From these results we conclude that the increased blood pressure following prolonged exposure to CIH in healthy humans is associated with sympathetic activation and augmented FVR.


2018 ◽  
Vol 314 (2) ◽  
pp. H246-H254 ◽  
Author(s):  
Evan A. Kempf ◽  
Korynne S. Rollins ◽  
Tyler D. Hopkins ◽  
Alec L. Butenas ◽  
Joseph M. Santin ◽  
...  

Mechanical and metabolic signals arising during skeletal muscle contraction reflexly increase sympathetic nerve activity and blood pressure (i.e., the exercise pressor reflex). In a rat model of simulated peripheral artery disease in which a femoral artery is chronically (~72 h) ligated, the mechanically sensitive component of the exercise pressor reflex during 1-Hz dynamic contraction is exaggerated compared with that found in normal rats. Whether this is due to an enhanced acute sensitization of mechanoreceptors by metabolites produced during contraction or involves a chronic sensitization of mechanoreceptors is unknown. To investigate this issue, in decerebrate, unanesthetized rats, we tested the hypothesis that the increases in mean arterial blood pressure and renal sympathetic nerve activity during 1-Hz dynamic stretch are larger when evoked from a previously “ligated” hindlimb compared with those evoked from the contralateral “freely perfused” hindlimb. Dynamic stretch provided a mechanical stimulus in the absence of contraction-induced metabolite production that closely replicated the pattern of the mechanical stimulus present during dynamic contraction. We found that the increases in mean arterial blood pressure (freely perfused: 14 ± 1 and ligated: 23 ± 3 mmHg, P = 0.02) and renal sympathetic nerve activity were significantly greater during dynamic stretch of the ligated hindlimb compared with the increases during dynamic stretch of the freely perfused hindlimb. These findings suggest that the exaggerated mechanically sensitive component of the exercise pressor reflex found during dynamic muscle contraction in this rat model of simulated peripheral artery disease involves a chronic sensitizing effect of ligation on muscle mechanoreceptors and cannot be attributed solely to acute contraction-induced metabolite sensitization. NEW & NOTEWORTHY We found that the pressor and sympathetic nerve responses during dynamic stretch were exaggerated in rats with a ligated femoral artery (a model of peripheral artery disease). Our findings provide mechanistic insights into the exaggerated exercise pressor reflex in this model and may have important implications for peripheral artery disease patients.


1992 ◽  
Vol 263 (5) ◽  
pp. H1348-H1355 ◽  
Author(s):  
P. B. Persson ◽  
H. Stauss ◽  
O. Chung ◽  
U. Wittmann ◽  
T. Unger

This study tests whether the power spectrum of blood pressure (BP) provides information toward the sympathovagal balance of BP control by comparing the BP (femoral arterial catheter) spectrum with the spectrum of the efferent sympathetic nerve activity (SNA, bipolar electrode around splanchnic nerve). A remarkable resemblance between both spectra was found. A high-frequency component (HF) linked to respiration and a slower fluctuation type between 0.15 and 0.6 Hz (LF) were identified. There was a large and significant coherence only in the HF range of the BP and SNA power spectrum (P < 0.01). The phase lag of SNA and BP was roughly 200 ms. The recordings were repeated during pharmacological blockade in nine Wistar-Kyoto rats (WKY) and nine spontaneously hypertensive rats (SHR). alpha 1-Adrenoceptor blockade (prazosin) reduced the proportional LF power of BP in both rat strains (WKY P < 0.01, SHR P < 0.05) in favor of HF (WKY P < 0.01, SHR P < 0.01). Parasympathetic blockade (methylscopolamine) had no effect on proportions of power. Similarly, there were no significant differences in the proportional HF and LF power spectra of WKY and SHR. These data provide direct evidence for a relationship between the BP and SNA power spectra; however, only the acute changes in the sympathetic tone changed the LF-HF relationship.


2013 ◽  
Vol 304 (5) ◽  
pp. H759-H766 ◽  
Author(s):  
Seth T. Fairfax ◽  
Jaume Padilla ◽  
Lauro C. Vianna ◽  
Michael J. Davis ◽  
Paul J. Fadel

Previous studies in humans attempting to assess sympathetic vascular transduction have related large reflex-mediated increases in muscle sympathetic nerve activity (MSNA) to associated changes in limb vascular resistance. However, such procedures do not provide insight into the ability of MSNA to dynamically control vascular tone on a beat-by-beat basis. Thus we examined the influence of spontaneous MSNA bursts on leg vascular conductance (LVC) and how variations in MSNA burst pattern (single vs. multiple bursts) and burst size may affect the magnitude of the LVC response. In 11 young men, arterial blood pressure, common femoral artery blood flow, and MSNA were continuously recorded during 20 min of supine rest. Signal averaging was used to characterize percent changes in LVC for 15 cardiac cycles following heartbeats associated with and without MSNA bursts. LVC significantly decreased following MSNA bursts, reaching a nadir during the 6th cardiac cycle (single bursts, −2.9 ± 1.1%; and multiple bursts, −11.0 ± 1.4%; both, P < 0.001). Individual MSNA burst amplitudes and the total amplitude of consecutive bursts were related to the magnitude of peak decreases in LVC. In contrast, cardiac cycles without MSNA bursts were associated with a significant increase in LVC (+3.1 ± 0.5%; P < 0.001). Total vascular conductance decreased in parallel with LVC also reaching a nadir around the peak rise in arterial blood pressure following an MSNA burst. Collectively, these data are the first to assess beat-by-beat sympathetic vascular transduction in resting humans, demonstrating robust and dynamic decreases in LVC following MSNA bursts, an effect that was absent for cardiac cycles without MSNA bursts.


Sign in / Sign up

Export Citation Format

Share Document