Activation of NMDA receptors drives action potentials in superficial dorsal horn from neonatal rats

Neuroreport ◽  
2000 ◽  
Vol 11 (8) ◽  
pp. 1721-1727 ◽  
Author(s):  
Rita Bardoni ◽  
Pier Cosimo Magherini ◽  
Amy B. MacDermott
1994 ◽  
Vol 72 (6) ◽  
pp. 2956-2965 ◽  
Author(s):  
J. Nastrom ◽  
S. P. Schneider ◽  
E. R. Perl

1. Intracellular recordings were made from 128 superficial dorsal horn (laminae I and II) neurons in slice preparations of the lumbosacral spinal cord obtained from young hamsters. Stimulation of the segmental dorsal root evoked postsynaptic potentials in all neurons. The average transmembrane resting potential was -61 +/- 1 mV (mean +/- SE; n = 123). The mean action potential amplitude was 75 +/- 1 mV (n = 105) with a duration at half peak of 1.1 +/- 0.1 ms (n = 102). The mean input resistance of these neurons was 72 +/- 4 M omega (n = 125). These values are comparable to those reported in other studies on neurons of this region using penetrating microelectrodes. 2. Bath application of N-methyl-D-aspartate (NMDA; 50 microM) depolarized 67 of 71 (94%) of the tested neurons. Superfusion with the non-NMDA amino acid agonists DL-alpha-amino-3-hydroxy-5-methyl-4- isoxazole propionic acid (AMPA; 20 microM) and kainate (KA; 50 microM) depolarized all tested neurons by > 10 mV. On the other hand, only 13 of 67 (19%) tested neurons were depolarized > 4 mV by superfusion solutions containing 3 mM L-glutamate (Glu). L-Aspartate at 3 mM depolarized three out of seven neurons by > 4 mV and appeared to be equally as effective as Glu. 3. The non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) substantially attenuated the AMPA- and KA-induced depolarizations and partially attenuated the NMDA-induced depolarizations. The NMDA antagonist 3 [(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP; 50 microM) reversibly blocked the NMDA-induced depolarization in all tested neurons. Glu-induced depolarization was unaffected by CNQX but was attenuated by CPP in three of three tested neurons. These observations indicate that some of the Glu-induced depolarization was mediated by NMDA receptors. 4. CNQX reversibly attenuated excitatory postsynaptic potentials (EPSPs) produced by primary afferent activity in A delta- and C-fibers whereas CPP suppressed only the late EPSP components. Therefore in the neurons sampled, synaptic responses evoked from primary afferent fibers appear to be mediated by both non-NMDA and NMDA receptors. 5. The glutamate uptake inhibitors, L-trans-pyrrolidine-2,4-dicarboxylate (L-trans PDC; 50 microM; n = 6) and threo-3-hydroxy-D-aspartate (1 mM; n = 1) did not have a consistent effect upon Glu action background discharge, RN or Vm in Glu-unresponsive neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


2006 ◽  
Vol 26 (46) ◽  
pp. 12033-12042 ◽  
Author(s):  
J. Zeng ◽  
L. M. Thomson ◽  
S. A. Aicher ◽  
G. W. Terman

2010 ◽  
Vol 112 (1) ◽  
pp. 138-143 ◽  
Author(s):  
Kenta Furutani ◽  
Miho Ikoma ◽  
Hideaki Ishii ◽  
Hiroshi Baba ◽  
Tatsuro Kohno

Background The local anesthetic bupivacaine is thought not only to block sodium channels but also to interact with various receptors. Here, the authors focus on excitatory glutamatergic transmission in the superficial dorsal horn of the spinal cord with respect to its importance for nociceptive processing. Methods The effects of bupivacaine on the response to exogenous administration of N-methyl-D-aspartate (NMDA) receptor agonists were examined in lamina II neurons of adult rat spinal cord slices using the whole-cell patch-clamp technique. Results Bupivacaine (0.5, 2 mm) dose-dependently reduced the peak amplitudes of exogenous NMDA-induced currents. However, this inhibitory effect of bupivacaine (2 mm) was not blocked by the presence of tetrodotoxin, a sodium channel blocker, or La(3+), a voltage-gated Ca+ channel blocker, and was unaffected by changes in pH conditions. Moreover, intrapipette guanosine-5'-O-(2-thiodiphosphate) (1 mm), a G-protein inhibitor, did not block the reduction of NMDA current amplitudes by bupivacaine. Similarly, lidocaine, ropivacaine, and mepivacaine also reduced the amplitudes of NMDA-induced currents. Conclusions These findings raise the possibility that the antinociceptive effect of bupivacaine may be due to direct modulation of NMDA receptors in the superficial dorsal horn. In addition to voltage-gated sodium channels, glutamate NMDA receptors are also important for analgesia induced by local anesthetics.


2015 ◽  
Vol 523 (7) ◽  
pp. 1038-1053 ◽  
Author(s):  
Jie Li ◽  
Elizabeth Kritzer ◽  
Neil C. Ford ◽  
Shahriar Arbabi ◽  
Mark L. Baccei

2013 ◽  
Vol 591 (7) ◽  
pp. 1935-1949 ◽  
Author(s):  
Masafumi Kosugi ◽  
Go Kato ◽  
Stanislav Lukashov ◽  
Gautam Pendse ◽  
Zita Puskar ◽  
...  

Pain ◽  
1993 ◽  
Vol 53 (2) ◽  
pp. 137-145 ◽  
Author(s):  
J. Millar ◽  
F. E. OʼBrien ◽  
G. V. Williams ◽  
J. Wood

Sign in / Sign up

Export Citation Format

Share Document