nmda receptors
Recently Published Documents


TOTAL DOCUMENTS

3771
(FIVE YEARS 389)

H-INDEX

152
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Fatiha Sebih ◽  
Nawfel Mokrane ◽  
Pierre Fontanel ◽  
Mete Kayatekin ◽  
Mahira Kaabeche ◽  
...  

Gamma-L-glutamyl-L-glutamate (γ-Glu-Glu) was synthetized and further characterized for its activity on cultured neurons. We observed that γ-Glu-Glu elicited excitatory effects on neurons likely by activating mainly the N-methyl-D-aspartate (NMDA) receptors. These effects were dependent on the integrity of synaptic transmission as they were blocked by tetrodotoxin (TTX). We next evaluated its activity on NMDA receptors by testing it on cells expressing these receptors. We observed that γ-Glu-Glu partially activated NMDA receptors and exhibited better efficacy for NMDA receptors containing the GluN2B subunit. Moreover, at low concentration, γ-Glu-Glu potentiated the responses of glutamate on NMDA receptors. Finally, the endogenous production of γ-Glu-Glu was measured by LC-MS on the extracellular medium of C6 rat astroglioma cells. We found that extracellular γ-Glu-Glu concentration was, to some extent, directly linked to GSH metabolism as γ-Glu-Glu can be a by-product of glutathione (GSH) breakdown after γ-glutamyl transferase action. Therefore, γ-Glu-Glu could exert excitatory effects by activating neuronal NMDA receptors when GSH production is enhanced.


Author(s):  
Menghan Niu ◽  
Xin Yang ◽  
Yuanyuan Li ◽  
Yanping Sun ◽  
Long Wang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 ◽  
Author(s):  
Yaiza Gramuntell ◽  
Patrycja Klimczak ◽  
Simona Coviello ◽  
Marta Perez-Rando ◽  
Juan Nacher

Changes in the physiology, neurochemistry and structure of neurons, particularly of their dendritic spines, are thought to be crucial players in age-related cognitive decline. One of the most studied brain structures affected by aging is the hippocampus, known to be involved in different essential cognitive processes. While the aging-associated quantitative changes in dendritic spines of hippocampal pyramidal cells have already been studied, the relationship between aging and the structural dynamics of hippocampal interneurons remains relatively unknown. Spines are not a frequent feature in cortical inhibitory neurons, but these postsynaptic structures are abundant in a subpopulation of somatostatin expressing interneurons, particularly in oriens-lacunosum moleculare (O-LM) cells in the hippocampal CA1. Previous studies from our laboratory have shown that the spines of these interneurons are highly plastic and influenced by NMDA receptor manipulation. Thus, in the present study, we have investigated the impact of aging on this interneuronal subpopulation. The analyses were performed in 3−, 9−, and 16-month-old GIN mice, a strain in which somatostatin positive interneurons express GFP. We studied the changes in the density of dendritic spines, en passant boutons, and the expression of NMDA receptors (GluN1 and GluN2B) using confocal microscopy and image analysis. We observed a significant decrease in dendritic spine density in 9-month-old animals when compared with 3-month-old animals. We also observed a decrease in the expression of the GluN2B subunit in O-LM cells, but not of that of GluN1, during aging. These results will constitute the basis for more advanced studies of the structure and connectivity of interneurons during aging and their contribution to cognitive decline.


2021 ◽  
Author(s):  
Eduarda Susin ◽  
Alain Destexhe

Psychotic drugs such as ketamine induce symptoms close to schizophrenia, and stimulates the production of gamma oscillations, as also seen in patients, but the underlying mechanisms are still unclear. Here, we have used computational models of cortical networks generating gamma oscillations, and have integrated the action of drugs such as ketamine to partially block n-methyl-d-Aspartate (NMDA) receptors. The model can reproduce the modulation of gamma oscillations by NMDA-receptor antagonists, assuming that antagonists affect NMDA receptors predominantly on inhibitory interneurons. We next used the model to compare the responsiveness of the network to external stimuli, and found that when NMDA channnels are blocked an increase of Gamma power is observed altogether with an increase of network responsiveness. However, this responsiveness increase applies not only to gamma states, but also to synchronous states with no apparent gamma. We conclude that NMDA antagonists induce increased excitability state, which may or may not produce gamma oscillations, but the response to external inputs is exacerbated, which may explain phenomena such as altered perception or hallucinations.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jing Wang ◽  
Nicolas Serratrice ◽  
Cindy J. Lee ◽  
Florence François ◽  
Jonathan V. Sweedler ◽  
...  

NMDA receptors (NMDARs) populate the complex between inner hair cell (IHC) and spiral ganglion neurons (SGNs) in the developing and mature cochlea. However, in the mature cochlea, activation of NMDARs is thought to mainly occur under pathological conditions such as excitotoxicity. Ototoxic drugs such as aspirin enable cochlear arachidonic-acid-sensitive NMDAR responses, and induced chronic tinnitus was blocked by local application of NMDAR antagonists into the cochlear fluids. We largely ignore if other modulators are also engaged. In the brain, D-serine is the primary physiological co-agonist of synaptic NMDARs. Whether D-serine plays a role in the cochlea had remained unexplored. We now reveal the presence of D-serine and its metabolic enzymes prior to, and at hearing onset, in the sensory and non-neuronal cells of the cochlea of several vertebrate species. In vivo intracochlear perfusion of D-serine in guinea pigs reduces sound-evoked activity of auditory nerve fibers without affecting the receptor potentials, suggesting that D-serine acts specifically on the postsynaptic auditory neurons without altering the functional state of IHC or of the stria vascularis. Indeed, we demonstrate in vitro that agonist-induced activation of NMDARs produces robust calcium responses in rat SGN somata only in the presence of D-serine, but not of glycine. Surprisingly, genetic deletion in mice of serine racemase (SR), the enzyme that catalyzes D-serine, does not affect hearing function, but offers protection against noise-induced permanent hearing loss as measured 3 months after exposure. However, the mechanisms of activation of NMDA receptors in newborn rats may be different from those in adult guinea pigs. Taken together, these results demonstrate for the first time that the neuro-messenger D-serine has a pivotal role in the cochlea by promoting the activation of silent cochlear NMDAR in pathological situations. Thus, D-serine and its signaling pathway may represent a new druggable target for treating sensorineural hearing disorders (i.e., hearing loss, tinnitus).


2021 ◽  
pp. JN-RM-1968-21
Author(s):  
Yuying Huang (黄玉莹) ◽  
Shao-Rui Chen (陈少瑞) ◽  
Hong Chen (陈红) ◽  
Jing-Jing Zhou (周京京) ◽  
Daozhong Jin (金道忠) ◽  
...  

2021 ◽  
Vol 201 ◽  
pp. 108833
Author(s):  
Alen V. Eapen ◽  
Diego Fernández-Fernández ◽  
John Georgiou ◽  
Zuner A. Bortolotto ◽  
Stafford Lightman ◽  
...  

2021 ◽  
Vol 201 ◽  
pp. 108818
Author(s):  
Kiran Sapkota ◽  
Erica S. Burnell ◽  
Mark W. Irvine ◽  
Guangyu Fang ◽  
Dinesh Y. Gawande ◽  
...  

2021 ◽  
Vol 14 ◽  
Author(s):  
Jacob B. Ruden ◽  
Mrinalini Dixit ◽  
José C. Zepeda ◽  
Brad A. Grueter ◽  
Laura L. Dugan

N-methyl-D-aspartate (NMDA) receptors are critical for higher-order nervous system function, but in previously published protocols to convert human induced pluripotent stem cells (iPSCs) to mature neurons, functional NMDA receptors (NMDARs) are often either not reported or take an extended time to develop. Here, we describe a protocol to convert human iPSC-derived neural progenitor cells (NPCs) to mature neurons in only 37 days. We demonstrate that the mature neurons express functional NMDARs exhibiting ligand-activated calcium flux, and we document the presence of NMDAR-mediated electrically evoked postsynaptic current. In addition to being more rapid than previous procedures, our protocol is straightforward, does not produce organoids which are difficult to image, and does not involve co-culture with rodent astrocytes. This could enhance our ability to study primate/human-specific aspects of NMDAR function and signaling in health and disease.


Sign in / Sign up

Export Citation Format

Share Document