Functional residual capacity assessment during open and closed tracheo-bronchial suctioning

2005 ◽  
Vol 22 (Supplement 34) ◽  
pp. 64
Author(s):  
H. Heinze ◽  
J. Schumacher ◽  
M. Grossherr ◽  
W. Eichler
2007 ◽  
Vol 104 (3) ◽  
pp. 598-604 ◽  
Author(s):  
Hermann Heinze ◽  
Bernhard Schaaf ◽  
Jochen Grefer ◽  
Karl Klotz ◽  
Wolfgang Eichler

1999 ◽  
Vol 45 (4, Part 2 of 2) ◽  
pp. 211A-211A
Author(s):  
Cindy T McEvoy ◽  
Susan C Bowling ◽  
Kathleen M Williamson ◽  
Pam McGaw ◽  
M Durand

1979 ◽  
Vol 46 (5) ◽  
pp. 867-871 ◽  
Author(s):  
A. Vinegar ◽  
E. E. Sinnett ◽  
D. E. Leith

Awake mice (22.6--32.6 g) were anesthetized intravenously during head-out body plethysmography. One minute after pentobarbital sodium anesthesia, tidal volume had fallen from 0.28 +/- 0.04 to 0.14 +/- 0.02 ml and frequency from 181 +/- 20 to 142 +/- 8. Functional residual capacity (FRC) decreased by 0.10 +/- 0.02 ml. Expiratory flow-volume curves were linear, highly repeatable, and submaximal over substantial portions of expiration in awake and anesthetized mice; and expiration was interrupted at substantial flows that abruptly fell to and crossed zero as inspiration interrupted relaxed expiration. FRC is maintained at a higher level in awake mice due to a higher tidal volume and frequency coupled with expiratory braking (persistent inspiratory muscle activity or increased glottal resistance). In anesthetized mice, the absence of braking, coupled with reductions in tidal volume and frequency and a prolonged expiratory period, leads to FRCs that approach relaxation volume (Vr). An equation in derived to express the difference between FRC and Vr in terms of the portion of tidal volume expired without braking, the slope of the linear portion of the expiratory flow-volume curve expressed as V/V, the time fraction of one respiratory cycle spent in unbraked expiration, and respiratory frequency.


Sign in / Sign up

Export Citation Format

Share Document