Dynamic mechanisms determine functional residual capacity in mice, Mus musculus

1979 ◽  
Vol 46 (5) ◽  
pp. 867-871 ◽  
Author(s):  
A. Vinegar ◽  
E. E. Sinnett ◽  
D. E. Leith

Awake mice (22.6--32.6 g) were anesthetized intravenously during head-out body plethysmography. One minute after pentobarbital sodium anesthesia, tidal volume had fallen from 0.28 +/- 0.04 to 0.14 +/- 0.02 ml and frequency from 181 +/- 20 to 142 +/- 8. Functional residual capacity (FRC) decreased by 0.10 +/- 0.02 ml. Expiratory flow-volume curves were linear, highly repeatable, and submaximal over substantial portions of expiration in awake and anesthetized mice; and expiration was interrupted at substantial flows that abruptly fell to and crossed zero as inspiration interrupted relaxed expiration. FRC is maintained at a higher level in awake mice due to a higher tidal volume and frequency coupled with expiratory braking (persistent inspiratory muscle activity or increased glottal resistance). In anesthetized mice, the absence of braking, coupled with reductions in tidal volume and frequency and a prolonged expiratory period, leads to FRCs that approach relaxation volume (Vr). An equation in derived to express the difference between FRC and Vr in terms of the portion of tidal volume expired without braking, the slope of the linear portion of the expiratory flow-volume curve expressed as V/V, the time fraction of one respiratory cycle spent in unbraked expiration, and respiratory frequency.

1982 ◽  
Vol 52 (5) ◽  
pp. 1209-1215 ◽  
Author(s):  
J. P. Mortola ◽  
J. T. Fisher ◽  
B. Smith ◽  
G. Fox ◽  
S. Weeks

Passive compliance (C) has been measured in 10 infants at 10--90 min after birth and in 10 infants at a few days of life by recording mouth pressure after airways occlusions at end inspiration. From the slope of the expiratory flow-volume curve, the passive time constant (tau) and resistance (R = tau/C) have been also computed. Examination of the changes of C with time and of the expiratory flow-volume curves indicates that the end-expiratory volume is maintained above functional residual capacity at both ages, but significantly more so at a few days (7.6 ml) than at 10--90 min (3.5 ml). The passive time constant (tau = C . R) is shorter at the early age due to the smaller C. The active compliance (C′) and resistance (R′) values have been estimated from the pressure generated by the infant when the airways are occluded at end expiration. The active time constant of the respiratory system (tau′ = C′ . R′) is less than tau, due to a smaller active compliance, particularly at a few days. The active resistance is on the contrary similar to R. The active stiffening of the respiratory system provides more stability of the infant's respiratory system and a more ready volume response for any given change in pressure; its price, however, is a higher work of breathing. At optimal breathing rates, in fact, the active work is 127% (10--90 min) to 183% (a few days) higher than that computed from the passive values. The inspiratory flow wave tends to be squared at both ages minimizing the energy losses due to friction.


2013 ◽  
Vol 58 (10) ◽  
pp. 1643-1648 ◽  
Author(s):  
M. Nozoe ◽  
K. Mase ◽  
S. Murakami ◽  
M. Okada ◽  
T. Ogino ◽  
...  

1990 ◽  
Vol 68 (6) ◽  
pp. 2550-2563 ◽  
Author(s):  
R. K. Lambert

A computational model for expiration from lungs with mechanical nonhomogeneities was used to investigate the effect of such nonhomogeneities on the distribution of expiratory flow and the development of alveolar pressure differences between regions. The nonhomogeneities used were a modest constriction of the peripheral airways and a 50% difference in compliance between regions. The model contains only two mechanically different regions but allows these to be as grossly distributed as left lung-right lung or to be distributed as a set of identical pairs of parallel nonhomogeneous regions with flows from each merging in a specified bronchial generation. The site of flow merging had no effect on the flow-volume curve but had a significant effect on the development of alveolar pressure differences (delta PA). With the peripheral constriction, greater values of delta PA developed when flows were merged peripherally rather than centrally. The opposite was true in the case of a compliance nonhomogeneity. The delta PA values were smaller at submaximal flows. Plots of delta PA vs. lung volume were similar to those obtained experimentally. These results were interpreted in terms of the expression used for the fluid mechanics of the merging flows. delta PA was greater when the viscosity of the expired gas was increased or when its density was reduced. Partial forced expirations were shown to indicate the presence of mechanical nonhomogeneity.


1982 ◽  
Vol 29 (1) ◽  
pp. 30-36
Author(s):  
Song Hyun Nam ◽  
Hyun Ha Park ◽  
Re Hwe Kim ◽  
Sung Koo Han ◽  
Ye Won Kim ◽  
...  

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Jonathon Stickford ◽  
Marc Augenreich ◽  
Valesha Province ◽  
Nina Stute ◽  
Abigail Stickford ◽  
...  

CHEST Journal ◽  
1988 ◽  
Vol 94 (4) ◽  
pp. 799-806 ◽  
Author(s):  
Mary C. Kapp ◽  
E.Neil Schachter ◽  
Gerald J. Beck ◽  
Lucinda R. Maunder ◽  
Theodore J. Witek

CHEST Journal ◽  
1988 ◽  
Vol 94 (4) ◽  
pp. 792-798 ◽  
Author(s):  
Françoise Neukirch ◽  
René Chansin ◽  
Renata Liard ◽  
Monique Levallois ◽  
Philippe Leproux

Sign in / Sign up

Export Citation Format

Share Document