Neostigmine/Glycopyrrolate Administered after Recovery from Neuromuscular Block Increases Upper Airway Collapsibility by Decreasing Genioglossus Muscle Activity in Response to Negative Pharyngeal Pressure

2010 ◽  
Vol 113 (6) ◽  
pp. 1280-1288 ◽  
Author(s):  
Frank Herbstreit ◽  
Daniela Zigrahn ◽  
Christof Ochterbeck ◽  
Jürgen Peters ◽  
Matthias Eikermann

Background Reversal of residual neuromuscular blockade by acetylcholinesterase inhibitors (e.g., neostigmine) improves respiratory function. However, neostigmine may also impair muscle strength. We hypothesized that neostigmine administered after recovery of the train-of-four (TOF) ratio impairs upper airway integrity and genioglossus muscle function. Methods We measured, in 10 healthy male volunteers, epiglottic and nasal mask pressures, genioglossus electromyogram, air flow, respiratory timing, and changes in lung volume before, during (TOF ratio: 0.5), and after recovery of the TOF ratio to unity, and after administration of neostigmine 0.03 mg/kg IV (with glycopyrrolate 0.0075 mg/kg). Upper airway critical closing pressure (Pcrit) was calculated from flow-limited breaths during random pharyngeal negative pressure challenges. Results Pcrit increased significantly after administration of neostigmine/glycopyrrolate compared with both TOF recovery (mean ± SD, by 27 ± 21%; P = 0.02) and baseline (by 38 ± 17%; P = 0.002). In parallel, phasic genioglossus activity evoked by negative pharyngeal pressure decreased (by 37 ± 29%, P = 0.005) compared with recovery, almost to a level observed at a TOF ratio of 0.5. Lung volume, respiratory timing, tidal volume, and minute ventilation remained unchanged after neostigmine/glycopyrrolate injection. Conclusion Neostigmine/glycopyrrolate, when administered after recovery from neuromuscular block, increases upper airway collapsibility and impairs genioglossus muscle activation in response to negative pharyngeal pressure. Reversal with acetylcholinesterase inhibitors may be undesirable in the absence of neuromuscular blockade.

2009 ◽  
Vol 110 (6) ◽  
pp. 1253-1260 ◽  
Author(s):  
Frank Herbstreit ◽  
Jürgen Peters ◽  
Matthias Eikermann

Background Residual neuromuscular blockade increases the risk to develop postoperative complications. The authors hypothesized that minimal neuromuscular blockade (train-of-four [TOF] ratio 0.5-1) increases upper airway collapsibility and impairs upper airway dilator muscle compensatory responses to negative pharyngeal pressure challenges. Methods Epiglottic and nasal mask pressures, genioglossus electromyogram, respiratory timing, and changes in lung volume were measured in awake healthy volunteers (n = 15) before, during (TOF = 0.5 and 0.8 [steady state]), and after recovery of TOF to unity from rocuronium-induced partial neuromuscular blockade. Passive upper airway closing pressure (negative pressure drops, random order, range +2 to -30 cm H2O) and pressure threshold for flow limitation were determined. Results Upper airway closing pressure increased (was less negative) significantly from baseline by 54 +/- 4.4% (means +/- SEM), 37 +/- 4.2%, and 16 +/- 4.1% at TOF ratios of 0.5, 0.8, and 1.0, respectively (P < 0.01 vs. baseline for any level). Phasic genioglossus activity almost quadrupled in response to negative (-20 cm H2O) pharyngeal pressure at baseline, and this increase was significantly impaired by 57 +/- 44% and 32 +/- 6% at TOF ratios of 0.5 and 0.8, respectively (P < 0.01 vs. baseline). End-expiratory lung volume, respiratory rate, and tidal volume did not change. Conclusion Minimal neuromuscular blockade markedly increases upper airway closing pressure, partly by impairing the genioglossus muscle compensatory response. Increased airway collapsibility despite unaffected values for resting ventilation may predispose patients to postoperative respiratory complications, particularly during airway challenges.


2013 ◽  
Vol 115 (3) ◽  
pp. 337-345 ◽  
Author(s):  
David R. Hillman ◽  
Jennifer H. Walsh ◽  
Kathleen J. Maddison ◽  
Peter R. Platt ◽  
Alan R. Schwartz ◽  
...  

Increasing lung volume increases upper airway patency and decreases airway resistance and collapsibility. The role of diaphragm contraction in producing these changes remains unclear. This study was undertaken to determine the effect of selective diaphragm contraction, induced by phrenic nerve stimulation, on upper airway collapsibility and the extent to which any observed change was attributable to lung volume-related changes in pressure gradients or to diaphragm descent-related mediastinal traction. Continuous bilateral transcutaneous cervical phrenic nerve stimulation (30 Hz) was applied to nine supine, anesthetized human subjects during transient decreases in airway pressure to levels sufficient to produce flow limitation when unstimulated. Stimulation was applied at two intensities (low and high) and its effects on lung volume and airflow quantified relative to unstimulated conditions. Lung volume increased by 386 ± 269 ml (means ± SD) and 761 ± 556 ml during low and high stimulation, respectively ( P < 0.05 for the difference between these values), which was associated with peak inspiratory flow increases of 69 ± 57 and 137 ± 108 ml/s, respectively ( P < 0.05 for the difference). Stimulation-induced change in lung volume correlated with change in peak flow ( r = 0.65, P < 0.01). Diaphragm descent-related outward displacement of the abdominal wall produced no change in airflow unless accompanied by lung volume change. We conclude that phrenic nerve stimulation-induced diaphragm contraction increases lung volume and reduces airway collapsibility in a dose-dependent manner. The effect appears primarily mediated by changes in lung volume rather than mediastinal traction from diaphragm descent. The study provides a rationale for use of continuous phrenic stimulation to treat obstructive sleep apnea.


2005 ◽  
Vol 103 (3) ◽  
pp. 470-477 ◽  
Author(s):  
Peter R. Eastwood ◽  
Peter R. Platt ◽  
Kelly Shepherd ◽  
Kathy Maddison ◽  
David R. Hillman

Background This study investigated the effect of varying concentrations of propofol on upper airway collapsibility and the mechanisms responsible for it. Methods Upper airway collapsibility was determined from pressure-flow relations at three concentrations of propofol anesthesia (effect site concentration = 2.5, 4.0, and 6.0 mug/ml) in 12 subjects spontaneously breathing on continuous positive airway pressure. At each level of anesthesia, mask pressure was transiently reduced from a pressure sufficient to abolish inspiratory flow limitation (maintenance pressure = 12 +/- 1 cm H2O) to pressures resulting in variable degrees of flow limitation. The relation between mask pressure and maximal inspiratory flow was determined, and the critical pressure at which the airway occluded was recorded. Electromyographic activity of the genioglossus muscle (EMGgg) was obtained via intramuscular electrodes in 8 subjects. Results With increasing depth of anesthesia, (1) critical closing pressure progressively increased (-0.3 +/- 3.5, 0.5 +/- 3.7, and 1.4 +/- 3.5 cm H2O at propofol concentrations of 2.5, 4.0, and 6.0 microg/ml respectively; P &lt; 0.05 between each level), indicating a more collapsible upper airway; (2) inspiratory flow at the maintenance pressure significantly decreased; and (3) respiration-related phasic changes in EMGgg at the maintenance pressure decreased from 7.3 +/- 9.9% of maximum at 2.5 microg/ml to 0.8 +/- 0.5% of maximum at 6.0 microg/ml, whereas tonic EMGgg was unchanged. Relative to the levels of phasic and tonic EMGgg at the maintenance pressure immediately before a decrease in mask pressure, tonic activity tended to increase over the course of five flow-limited breaths at a propofol concentration of 2.5 microg/ml but not at propofol concentrations of 4.0 and 6.0 microg/ml, whereas phasic EMGgg was unchanged. Conclusions Increasing depth of propofol anesthesia is associated with increased collapsibility of the upper airway. This was associated with profound inhibition of genioglossus muscle activity. This dose-related inhibition seems to be the combined result of depression of central respiratory output to upper airway dilator muscles and of upper airway reflexes.


2012 ◽  
Vol 113 (5) ◽  
pp. 689-690 ◽  
Author(s):  
Alan R. Schwartz ◽  
Philip L. Smith ◽  
Hartmut Schneider ◽  
Susheel P. Patil ◽  
Jason P. Kirkness

2007 ◽  
Vol 30 (2) ◽  
pp. 345-353 ◽  
Author(s):  
R. Pierce ◽  
D. White ◽  
A. Malhotra ◽  
J. K. Edwards ◽  
D. Kleverlaan ◽  
...  

1993 ◽  
Vol 75 (3) ◽  
pp. 1222-1225 ◽  
Author(s):  
F. Series ◽  
I. Marc

Continuous negative airway pressure (CNAP) causes a decrease in lung volume, which is known to increase upper airway resistance by itself. We studied how this lung volume change could modify upper airway collapsibility with five normal awake subjects. In a first trial, pressure in a nasal mask (Pm) was progressively decreased in 3- to 5-cmH2O steps (CNAP). In a second trial, changes in lung volumes resulting from CNAP were prevented by applying simultaneously an equivalent level of negative extrathoracic pressure into a poncho-type respirator [isovolumetric CNAP (CNAPisovol)]. For each trial, we examined the relationship between the maximal inspiratory airflow of each flow-limited inspiratory cycle and the corresponding Pm by least-squares linear regression analysis and determined the critical pressure. We also determined the Pm threshold corresponding to the first Pm value below which flow limitation occurred. Flow limitation was observed in each subject with CNAP but in only two subjects with CNAPisovol. In these two subjects, the Pm threshold values were -20 and -9 cmH2O with CNAP and -39 and -16 cmH2O with CNAPisovol, respectively. Critical pressures for the same two subjects were -161 and -96 cmH2O with CNAP and -202 and -197 cmH2O with CNAPisovol, respectively. We conclude that CNAP-induced decreases in lung volume increase upper airway collapsibility.


Author(s):  
Samuel B. Squier ◽  
Susheel P. Patil ◽  
Hartmut Schneider ◽  
Philip L. Smith ◽  
Alan R. Schwartz

Sign in / Sign up

Export Citation Format

Share Document