The dynamics of the interaction between myosin subfragment 1 and pyrene-labelled thin filaments, from rabbit skeletal muscle

We have used actin labelled in Cys–374 with N -(1-pyrenyl)iodoacetamide to monitor the dynamics and equilibria of the interaction between myosin subfragment 1 and the actin–troponin–tropomyosin complex in the presence of calcium. These results are compared with those obtained for pure actin and myosin subfragment 1. The sensitivity of this fluorescent label allowed us to measure the binding affinity of myosin subfragment 1 for actin directly by fluorescence titration. The affinity of subfragment 1 for actin is increased sixfold by troponin–tropomyosin in the presence of calcium. Kinetic studies of the interaction of subfragment 1 and actin have revealed an isomerization of the actin–subfragment 1 complex from a state in which actin is weakly bound ( K a = 5.9 x 10 4 M -1 ) to a more tightly bound complex ( K a = 1.7 x 10 7 M -1 ) (Coates, Criddle & Geeves (1985) Biochem. J. 232, 351). Results in the presence of troponin–tropomyosin show the same isomerization. The sixfold increase in affinity of subfragment 1 for actin is shown to be due to a decrease in the rate of dissociation of actin from the weakly bound complex.

1991 ◽  
Vol 279 (3) ◽  
pp. 711-718 ◽  
Author(s):  
D F A McKillop ◽  
M A Geeves

The co-operative binding of myosin subfragment 1 (S1) to reconstituted skeletal-muscle thin filaments has been examined by monitoring the fluorescence of a pyrene probe on Cys-374 of actin. The degree of co-operativity differs when phosphate, sulphate or ADP are bound to the S1 active site. Binding isotherms have been analysed according to the Geeves & Halsall [(1987) Biophys. J. 52, 215-220] model, which proposed that troponin and tropomyosin effected regulation of the actomyosin interaction by controlling an isomerization of the actomyosin complex. The data support the proposal that seven actin monomers associated with a single tropomyosin molecule act as a co-operative unit that can be in one of two states. In the ‘closed’ state myosin can bind to actin, but the subsequent isomerization is prevented. The isomerization is only allowed after the seven-actin unit is in the ‘open’ form. Ca2+ controls the proportion of actin filaments in the ‘closed’ and ‘open’ forms in the absence of myosin heads. The ratio of ‘closed’ to ‘open’ forms is approx. 50:1 in the absence of Ca2+ and 5:1 in its presence.


Biochemistry ◽  
1984 ◽  
Vol 23 (18) ◽  
pp. 4150-4155 ◽  
Author(s):  
David L. Williams ◽  
Lois E. Greene ◽  
Evan Eisenberg

Sign in / Sign up

Export Citation Format

Share Document