Continents as a chemical boundary layer

Tectospheric structure can be described in terms of three basic types of surficial boundary layers: chemical (c.b.l.), mechanical (m.b.l.) and thermal (t.b.l.). Beneath old ocean basins the thickness of the c.b.l. ( ca . 40 km) is less than that of either the m.b.l. ( ca . 100 km) or the t.b.l. ( ca . 150 km), but the hypothesis that a similar structure underlies the old continental cratons is difficult to reconcile with seismic observations. We therefore examine an alternate model which postulates a much thicker c.b.l. beneath the cratons whose mantle component consists of a low-density peridotite depleted in its basaltic constituents. On the basis of seismological and petrological data it is inferred that this augmented c.b.l. extends below the m.b.l. to depths exceeding 150 km and acts to stabilize a thick ( > 200 km) t.b.l. against convective disruption. Because of its refractory nature the sub-m.b.l. portion of the c.b.l. constitutes a stable geochemical reservoir which has evidently been impregnated by large-ion lithophile elements fluxing from the deep mantle or from descending slabs. Consequently, its heat production is high ( ca . 0.1 μW/m 3 ) and it contributes significantly to the surface heat flux. The evolutionary history and dynamics of the continental c.b.l. are not well understood, especially the role of double-diffusive instabilities, but the fusion of the continental masses into ‘supercontinents’ and the orogenic compression that this entails are thought to be important processes in c.b.l. formation.

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 622 ◽  
Author(s):  
Seung-Bu Park ◽  
Jong-Jin Baik ◽  
Beom-Soon Han

The role of wind shear in the decay of the convective boundary layer (CBL) is systematically investigated using a series of large-eddy simulations. Nine CBLs with weak, intermediate, and strong wind shear are simulated, and their decays after stopping surface heat flux are investigated. After the surface heat flux is stopped, the boundary-layer-averaged turbulent kinetic energy (TKE) stays constant for almost one convective time scale and then decreases following a power law. While the decrease persists until the end of the simulation in the buoyancy-dominated (weak-shear) cases, the TKE in the other cases decreases slowly or even increases to a level which can be maintained by wind shear. In the buoyancy-dominated cases, convective cells occur, and they decay and oscillate over time. The oscillation of vertical velocity is not distinct in the other cases, possibly because wind shear disturbs the reversal of vertical circulations. The oscillations are detected again in the profiles of vertical turbulent heat flux in the buoyancy-dominated cases. In the strong-shear cases, mechanical turbulent eddies are generated, which transport heat downward in the lower boundary layers when convective turbulence decays significantly. The time series of vertical velocity skewness demonstrates the shear-dependent flow characteristics of decaying CBLs.


2022 ◽  
Author(s):  
Laura A. Paquin ◽  
Shaun Skinner ◽  
Stuart J. Laurence

2007 ◽  
Vol 85 (8) ◽  
pp. 869-878 ◽  
Author(s):  
A Ishak ◽  
R Nazar ◽  
I Pop

The laminar boundary-layer flow of a micropolar fluid on a fixed or continuously moving flat plate with uniform surface heat flux is investigated. The plate is assumed to move in the same oropposite direction to the free stream. The resulting system of nonlinear ordinary differential equations is solved numerically using the Keller-box method. Numerical results are obtained for the skin-friction coefficient and the local Nusselt number as well as the velocity, microrotation, and temperature profiles for some values of the governing parameters, namely, the velocity ratio parameter, material parameter, and Prandtl number. The results indicate that dual solutions exist when the plate and the free stream move in the opposite directions.PACS No.: 47.15.Cb


Sign in / Sign up

Export Citation Format

Share Document