The science of space weather

Author(s):  
Jonathan P Eastwood

The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.

Eos ◽  
2016 ◽  
Author(s):  
Michael Hartinger ◽  
C. Clauer ◽  
Zhonghua Xu

A recently completed instrument array in Antarctica provides a more complete understanding of the near-Earth space environment.


2013 ◽  
Vol 56 (2) ◽  
Author(s):  
Giorgiana De Franceschi ◽  
Maurizio Candidi

<p>[…] The collection of papers that forms this special issue represents the whole amplitude of research that is being conducted in the framework of GRAPE, while also connecting to other initiatives that address the same objectives in regions outside the polar regions, and worldwide, such as the Training Research and Applications Network to Support the Mitigation of Ionospheric Threats (TRANSMIT; www.transmitionosphere.net), a Seventh Framework Programme (FP7) Marie Curie Initial Training Network that is focused on the study of ionospheric phenomena and their effects on systems embedded in our daily life, Near-Earth Space Data Infrastructure for e-Science (ESPAS), an FP7-funded project that aims to provide the e-Infrastructure necessary to support the access to observations, for the modeling and prediction of the near-Earth Space environment, Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America (CIGALA) and its follow-up and extension Countering GNSS High-Accuracy Applications Limitations due to Ionospheric Disturbances in Brazil (CALIBRA), both of which are funded by the European Commission in the frame of FP7, for facing the equatorial ionosphere and its impact on GNSS. The main objective of the present Special Issue of Annals of Geophysics is to collect recent reports on work performed in the polar regions and on the datasets collected in time by the instrumentation deployed across various countries. This collection will set the starting point for further research in the field, especially in the perspective of the new and very advanced space system that will be available in the next few years. […]</p>


SPIE Newsroom ◽  
2016 ◽  
Author(s):  
Larry J. Paxton ◽  
John E. Hicks

2019 ◽  
Vol 9 ◽  
pp. A29
Author(s):  
Vladimir Kalegaev ◽  
Mikhail Panasyuk ◽  
Irina Myagkova ◽  
Yulia Shugay ◽  
Natalia Vlasova ◽  
...  

Internet-based system of Space Monitoring Data Center (SMDC) of Skobeltsyn Institute of Nuclear Physics of Moscow State University (SINP MSU) has been developed to predict and analyze radiation conditions in near-Earth space. This system contains satellite measurement databases and operational models and devoted to collect, store and process space weather monitoring data in the near real-time. SMDC operational services acquire data from ACE, SDO, GOES, Electro-L, Meteor-M satellites and use them for forecasting, now-casting and post-casting of space weather factors. This paper is intended to give overview of operational services of SMDC Internet-based system and demonstrate their possibilities and limitations to analyze space weather phenomena and predict radiation and geomagnetic conditions in the near-Earth space during February 14–March 5, 2014. This prolonged period of high level solar and geomagnetic activity demonstrates various manifestations of the space weather: solar proton events, geomagnetic storms and outer radiation belt (RB) dynamics. Solar sources of interplanetary space disturbances and their influence on geomagnetic and radiation state of the Earth’s magnetosphere were described using output coming from SMDC’ Web-based applications. Validation of SMDC’s operational models was performed based on the quality of description of the physical conditions in near-Earth space during space weather events observed from February 14 to March 5, 2014. The advantages and disadvantages of SMDC operational services are illustrated and discussed based on comparison with data obtained from satellites.


Sign in / Sign up

Export Citation Format

Share Document