scholarly journals Infectious disease macroecology: parasite diversity and dynamics across the globe

2021 ◽  
Vol 376 (1837) ◽  
pp. 20200350
Author(s):  
Shan Huang ◽  
Maxwell Farrell ◽  
Patrick R. Stephens
2021 ◽  
Vol 376 (1837) ◽  
pp. 20200367 ◽  
Author(s):  
Paulo Mateus Martins ◽  
Robert Poulin ◽  
Thiago Gonçalves-Souza

A robust understanding of what drives parasite β-diversity is an essential step towards explaining what limits pathogens' geographical spread. We used a novel global dataset (latitude −39.8 to 61.05 and longitude −117.84 to 151.49) on helminths of anurans to investigate how the relative roles of climate, host composition and spatial distance to parasite β-diversity vary with spatial scale (global, Nearctic and Neotropical), parasite group (nematodes and trematodes) and host taxonomic subset (family). We found that spatial distance is the most important driver of parasite β-diversity at the global scale. Additionally, we showed that the relative effects of climate concerning distance increase at the regional scale when compared with the global scale and that trematodes are generally more responsive to climate than nematodes. Unlike previous studies done at the regional scale, we did not find an effect of host composition on parasite β-diversity. Our study presents a new contribution to parasite macroecological theory, evidencing spatial and taxonomic contingencies of parasite β-diversity patterns, which are related to the zoogeographical realm and host taxonomic subset, respectively. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.


2021 ◽  
Vol 376 (1837) ◽  
pp. 20200355 ◽  
Author(s):  
James P. Herrera ◽  
James Moody ◽  
Charles L. Nunn

Future biodiversity loss threatens the integrity of complex ecological associations, including among hosts and parasites. Almost half of primate species are threatened with extinction, and the loss of threatened hosts could negatively impact parasite associations and ecosystem functions. If endangered hosts are highly connected in host–parasite networks, then future host extinctions will also drive parasite extinctions, destabilizing ecological networks. If threatened hosts are not highly connected, however, then network structure should not be greatly affected by the loss of threatened hosts. Networks with high connectance, modularity, nestedness and robustness are more resilient to perturbations such as the loss of interactions than sparse, nonmodular and non-nested networks. We analysed the interaction network involving 213 primates and 763 parasites and removed threatened primates (114 species) to simulate the effects of extinction. Our analyses revealed that connections to 23% of primate parasites (176 species) may be lost if threatened primates go extinct. In addition, measures of network structure were affected, but in varying ways because threatened hosts have fewer parasite interactions than non-threatened hosts. These results reveal that host extinctions will perturb the host–parasite network and potentially lead to secondary extinctions of parasites. The ecological consequences of these extinctions remain unclear. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.


Author(s):  
Adrian F. van Dellen

The morphologic pathologist may require information on the ultrastructure of a non-specific lesion seen under the light microscope before he can make a specific determination. Such lesions, when caused by infectious disease agents, may be sparsely distributed in any organ system. Tissue culture systems, too, may only have widely dispersed foci suitable for ultrastructural study. In these situations, when only a few, small foci in large tissue areas are useful for electron microscopy, it is advantageous to employ a methodology which rapidly selects a single tissue focus that is expected to yield beneficial ultrastructural data from amongst the surrounding tissue. This is in essence what "LIFTING" accomplishes. We have developed LIFTING to a high degree of accuracy and repeatability utilizing the Microlift (Fig 1), and have successfully applied it to tissue culture monolayers, histologic paraffin sections, and tissue blocks with large surface areas that had been initially fixed for either light or electron microscopy.


2003 ◽  
Vol 6 (3) ◽  
pp. 189-197 ◽  
Author(s):  
A. A. Cunningham ◽  
V. Prakash ◽  
D. Pain ◽  
G. R. Ghalsasi ◽  
G. A. H. Wells ◽  
...  
Keyword(s):  

2006 ◽  
Vol 40 (2) ◽  
pp. 20
Author(s):  
SHERRY BOSCHERT
Keyword(s):  

2005 ◽  
Vol 39 (1) ◽  
pp. 10
Author(s):  
MARY ANNE JACKSON
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document