spatial scale
Recently Published Documents


TOTAL DOCUMENTS

1767
(FIVE YEARS 388)

H-INDEX

86
(FIVE YEARS 9)

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123180
Author(s):  
Yuan Wang ◽  
Yuan Zhang ◽  
Baojun Wang ◽  
Maohong Fan ◽  
Lixia Ling ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Xiaohua Luo ◽  
Jiaruo Peng ◽  
Mingsong Mao

There are a lot of studies that show that criminal activities exhibit certain temporal and spatial regularities. However, they often focus on either specific cities or types of crime and cannot clearly explain the patterns for the crime. What are the temporal patterns at the microlevel spatial scale? How general? Understanding the regularities of urban crime is important because it can help us improve the economy and safety of the cities and maintain harmony. This study analyzes the theft and burglary crime data from five cities in the United States. We successfully find the spatiotemporal patterns of two types of crime in different time series across cities.


2022 ◽  
Author(s):  
Jeongho Park ◽  
Emilie Josephs ◽  
Talia Konkle

We can easily perceive the spatial scale depicted in a picture, regardless of whether it is a small space (e.g., a close-up view of a chair) or a much larger space (e.g., an entire class room). How does the human visual system encode this continuous dimension? Here, we investigated the underlying neural coding of depicted spatial scale, by examining the voxel tuning and topographic organization of brain responses. We created naturalistic yet carefully-controlled stimuli by constructing virtual indoor environments, and rendered a series of snapshots to smoothly sample between a close-up view of the central object and far-scale view of the full environment (object-to-scene continuum). Human brain responses were measured to each position using functional magnetic resonance imaging. We did not find evidence for a smooth topographic mapping for the object-to-scene continuum on the cortex. Instead, we observed large swaths of cortex with opposing ramp-shaped profiles, with highest responses to one end of the object-to-scene continuum or the other, and a small region showing a weak tuning to intermediate scale views. Importantly, when we considered the multi-voxel patterns of the entire ventral occipito-temporal cortex, we found smooth and linear representation of the object-to-scene continuum. Thus, our results together suggest that depicted spatial scale is coded parametrically in large-scale population codes across the entire ventral occipito-temporal cortex.


2022 ◽  
Vol 73 ◽  
pp. 102722
Author(s):  
Jingjing Li ◽  
Amy H. Auchincloss ◽  
Jana A. Hirsch ◽  
Steven J. Melly ◽  
Kari A. Moore ◽  
...  

2021 ◽  
Vol 25 (12) ◽  
pp. 6381-6405
Author(s):  
Mark R. Muetzelfeldt ◽  
Reinhard Schiemann ◽  
Andrew G. Turner ◽  
Nicholas P. Klingaman ◽  
Pier Luigi Vidale ◽  
...  

Abstract. High-resolution general circulation models (GCMs) can provide new insights into the simulated distribution of global precipitation. We evaluate how summer precipitation is represented over Asia in global simulations with a grid length of 14 km. Three simulations were performed: one with a convection parametrization, one with convection represented explicitly by the model's dynamics, and a hybrid simulation with only shallow and mid-level convection parametrized. We evaluate the mean simulated precipitation and the diurnal cycle of the amount, frequency, and intensity of the precipitation against satellite observations of precipitation from the Climate Prediction Center morphing method (CMORPH). We also compare the high-resolution simulations with coarser simulations that use parametrized convection. The simulated and observed precipitation is averaged over spatial scales defined by the hydrological catchment basins; these provide a natural spatial scale for performing decision-relevant analysis that is tied to the underlying regional physical geography. By selecting basins of different sizes, we evaluate the simulations as a function of the spatial scale. A new BAsin-Scale Model Assessment ToolkIt (BASMATI) is described, which facilitates this analysis. We find that there are strong wet biases (locally up to 72 mm d−1 at small spatial scales) in the mean precipitation over mountainous regions such as the Himalayas. The explicit convection simulation worsens existing wet and dry biases compared to the parametrized convection simulation. When the analysis is performed at different basin scales, the precipitation bias decreases as the spatial scales increase for all the simulations; the lowest-resolution simulation has the smallest root mean squared error compared to CMORPH. In the simulations, a positive mean precipitation bias over China is primarily found to be due to too frequent precipitation for the parametrized convection simulation and too intense precipitation for the explicit convection simulation. The simulated diurnal cycle of precipitation is strongly affected by the representation of convection: parametrized convection produces a peak in precipitation too close to midday over land, whereas explicit convection produces a peak that is closer to the late afternoon peak seen in observations. At increasing spatial scale, the representation of the diurnal cycle in the explicit and hybrid convection simulations improves when compared to CMORPH; this is not true for any of the parametrized simulations. Some of the strengths and weaknesses of simulated precipitation in a high-resolution GCM are found: the diurnal cycle is improved at all spatial scales with convection parametrization disabled, the interaction of the flow with orography exacerbates existing biases for mean precipitation in the high-resolution simulations, and parametrized simulations produce similar diurnal cycles regardless of their resolution. The need for tuning the high-resolution simulations is made clear. Our approach for evaluating simulated precipitation across a range of scales is widely applicable to other GCMs.


Sign in / Sign up

Export Citation Format

Share Document