scholarly journals Description of Anaerobacterium chartisolvens gen. nov., sp. nov., an obligately anaerobic bacterium from Clostridium rRNA cluster III isolated from soil of a Japanese rice field, and reclassification of Bacteroides cellulosolvens Murray et al. 1984 as Pseudobacteroides cellulosolvens gen. nov., comb. nov.

2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1296-1303 ◽  
Author(s):  
Haruka Horino ◽  
Takashi Fujita ◽  
Akio Tonouchi

An obligately anaerobic bacterial strain designated T-1-35T was isolated as a dominant cultivable cellulose-degrading bacterium from soil of a Japanese rice field as an anaerobic filter-paper degrader. Cells of strain T-1-35T stained Gram-positive and were non-spore-forming rods with rounded ends, 0.8–1.0×3.5–15.0 µm, and motile by means of two to four polar flagella. Cells of strain T-1-35T exhibited pleomorphism: in aged cultures (over 90 days of incubation), almost all cells were irregularly shaped. Although no spore formation was observed, cells tolerated high temperatures, up to 90 °C for 10 min. The temperature range for growth was 15–40 °C, with an optimum at 35 °C. The pH range for growth was 5.5–9.0, with an optimum at pH 8.0–8.5 (slightly alkaliphilic). Strain T-1-35T fermented some carbohydrates to produce ethanol and lactate as the major products. Major cellular fatty acids were iso-C16 : 0 and iso-C13 : 0 3-OH. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain T-1-35T belonged to Clostridium rRNA cluster III. The closest relative of strain T-1-35T was Bacteroides cellulosolvens WM2T, with 16S rRNA gene sequence similarity of 93.4 %. Phenotypic, physiological and molecular genetic methods demonstrated that strain T-1-35T was distinct from its phylogenetic relatives (members of Clostridium rRNA cluster III) because it predominantly produced ethanol, iso-C13 : 0 3-OH was a major cellular fatty acid and it always exhibited pleomorphism. On the basis of the results of a polyphasic taxonomic study, strain T-1-35T is considered to represent a novel genus and species, Anaerobacterium chartisolvens gen. nov., sp. nov. The type strain of Anaerobacterium chartisolvens is T-1-35T ( = DSM 27016T = NBRC 109520T). In addition, from the results of our phylogenetic analysis and its phenotypic features, the species Bacteroides cellulosolvens Murray et al. 1984 is proposed to be reclassified in the new genus Pseudobacteroides as Pseudobacteroides cellulosolvens gen. nov., comb. nov., with the type strain WM2T ( = ATCC 35603T = DSM 2933T = NRCC 2944T).

2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1866-1875 ◽  
Author(s):  
Katharina J. Huber ◽  
Pia K. Wüst ◽  
Manfred Rohde ◽  
Jörg Overmann ◽  
Bärbel U. Foesel

Acidobacteria constitute an abundant fraction of the soil microbial community and are currently divided into 26 subdivisions. Most cultivated members of the Acidobacteria are affiliated with subdivision 1, while only a few representatives of subdivisions 3, 4, 8, 10 and 23 have been isolated and described so far. Two novel isolates of subdivision 4 of the Acidobacteria were isolated from subtropical savannah soils and are characterized in the present work. Cells of strains A22_HD_4HT and Ac_23_E3T were immotile rods that divided by binary fission. Colonies were pink and white, respectively. The novel strains A22_HD_4HT and Ac_23_E3T were aerobic mesophiles with a broad range of tolerance towards pH (4.0–9.5 and 3.5–10.0, respectively) and temperature (15–44 and 12–47 °C, respectively). Both showed chemo-organoheterotrophic growth on some sugars, the amino sugar N-acetylgalactosamine, a few amino acids, organic acids and various complex protein substrates. Major fatty acids of A22_HD_4HT and Ac_23_E3T were iso-C15 : 0, summed feature 1 (C13 : 0 3-OH/iso-C15 : 1 H), summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and anteiso-C17 : 0. The major quinone was MK-8; in addition, MK-7 occurred in small amounts. The DNA G+C contents of A22_HD_4HT and Ac_23_E3T were 53.2 and 52.6 mol%, respectively. The closest described relative was Blastocatella fastidiosa A2-16T, with 16S rRNA gene sequence identity of 93.2 and 93.3 %, respectively. Strains A22_HD_4HT and Ac_23_E3T displayed 16S rRNA gene sequence similarity of 97.4 % to each other. On the basis of the low DNA–DNA hybridization value, the two isolates represent different species. Based on morphological, physiological and molecular characteristics, the new genus Aridibacter gen. nov. is proposed, with two novel species, the type species Aridibacter famidurans sp. nov. (type strain A22_HD_4HT = DSM 26555T = LMG 27985T) and a second species, Aridibacter kavangonensis sp. nov. (type strain Ac_23_E3T = DSM 26558T = LMG 27597T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1342-1349 ◽  
Author(s):  
Mareike Jogler ◽  
Hong Chen ◽  
Julia Simon ◽  
Manfred Rohde ◽  
Hans-Jürgen Busse ◽  
...  

A previously undescribed aerobic, non-sporulating bacterium, strain G1A_585T, was isolated from an oligotrophic freshwater lake in Bavaria, Germany. The rod-shaped cells were Gram-stain-negative and non-motile. Based on 16S rRNA gene sequence similarity, strain G1A_585T was a member of the family Sphingomonadaceae and shared <95.2 % similarity with type strains of all members of the most closely related genus, Sphingopyxis . Phyogenetically, the isolate shared a root with strains of three marine species, Sphingopyxis flavimaris DSM 16223T, Sphingopyxis marina DSM 22363T and Sphingopyxis litoris DSM 22379T. The polar lipids of strain G1A_585T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, sphingoglycolipids, three glycolipids and one unknown lipid. Ubiquinone-10 was the dominant quinone (93.1 %) and ubiquinone-9 (6.5 %) was also detected. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c; 38.2 %); C16 : 1ω7c (33.6 %) and C14 : 0 2-OH (17.8 %). The major polyamine was spermidine and traces of 1,3-diaminopropane, putrescine and spermine were also detected. The DNA G+C content of strain G1A_585T was 55.7 mol% and the isolate was oxidase- and catalase-positive. Based on the phylogenetic relationship, the low DNA G+C content compared with most other members of the genus Sphingopyxis and the presence of signature nucleotides in the 16S rRNA gene sequence, a novel species in a new genus and species, Sphingorhabdus planktonica gen. nov., sp. nov., is proposed; the type strain of Sphingorhabdus planktonica is G1A_585T ( = DSM 25081T  = LMG 26646T). Because Sphingopyxis flavimaris DSM 16223T, Sphingopyxis marina DSM 22363T and Sphingopyxis litoris DSM 22379T form a phylogenetic group together with strain G1A_585T that is clearly separated from all other known Sphingopyxis strains and share signature nucleotides, these three Sphingopyxis strains are reclassified as members of the proposed novel genus Sphingorhabdus: Sphingorhabdus flavimaris comb. nov. (type strain SW-151T = DSM 16223T = KCTC 12232T), Sphingorhabdus marina comb. nov. (type strain FR1087T = DSM 22363T = IMSNU 14132T = KCTC 12763T = JCM 14161T) and Sphingorhabdus litoris comb. nov. (type strain FR1093T = DSM 22379T = IMSNU 14133T = KCTC 12764T = JCM 14162T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1403-1410 ◽  
Author(s):  
Yun-Hee Jang ◽  
Soo-Jin Kim ◽  
Tomohiko Tamura ◽  
Moriyuki Hamada ◽  
Hang-Yeon Weon ◽  
...  

A Gram-stain-positive, non-motile rod, designated strain SGM3-12T, was isolated from paddy soil in Suwon, Republic of Korea. 16S rRNA gene sequence analysis revealed that the strain represented a novel member of the family Microbacteriaceae . The nearest phylogenetic neighbour was Leifsonia kribbensis MSL-13T (97.4 % 16S rRNA gene sequence similarity). Strain SGM3-12T and Leifsonia kribbensis MSL-13T formed a distinct cluster within the family Microbacteriaceae . Strain SGM3-12T contained MK-12(H2) and MK-11(H2) as the predominant menaquinones with moderate amounts of MK-12 and MK-11; anteiso-C15 : 0 and iso-C16 : 0 as the major cellular fatty acids (>10 % of total); and diphosphatidylglycerol, phosphatidylglycerol and unidentified glycolipids as the polar lipids. The peptidoglycan type of the isolate was B1δ with l-Lys as the diagnostic cell-wall diamino acid. On the basis of these results, strain SGM3-12T represents a novel species within a new genus, for which the name Lysinimonas soli gen. nov., sp. nov. is proposed (the type strain of the type species is SGM3-12T = KACC 13362T = NBRC 107106T). It is also proposed that Leifsonia kribbensis be transferred to this genus as Lysinimonas kribbensis comb. nov. (the type strain is MSL-13T = DSM 19272T = JCM 16015T = KACC 21108T = KCTC 19267T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 636-640 ◽  
Author(s):  
Nang Kyu Kyu Win ◽  
Seung-Yeol Lee ◽  
Assunta Bertaccini ◽  
Shigetou Namba ◽  
Hee-Young Jung

A phytoplasma was identified in naturally infected wild Balanites triflora plants exhibiting typical witches’ broom symptoms (Balanites witches’ broom: BltWB) in Myanmar. The 16S rRNA gene sequence revealed that BltWB phytoplasma had the highest similarity to that of ‘Candidatus Phytoplasma ziziphi’ and it was also closely related to that of ‘Candidatus Phytoplasma ulmi ’. Phylogenetic analysis of the 16S rRNA gene sequences indicated that the BltWB phytoplasma clustered as a discrete subclade with Elm yellows phytoplasmas. RFLP analysis of the 16S rRNA gene including the 16S–23S spacer region differentiated the BltWB phytoplasma from ‘Ca. P. ziziphi ’, ‘Ca. P. ulmi ’ and ‘Candidatus Phytoplasma trifolii ’. Analysis of additional ribosomal protein (rp) and translocase protein (secY) gene sequences and phylogenetic analysis of BltWB showed that this phytoplasma was clearly distinguished from those of other ‘Candidatus Phytoplasma ’ taxa. Taking into consideration the unique plant host and the restricted geographical occurrence in addition to the 16S rRNA gene sequence similarity, the BltWB phytoplasma is proposed to represent a novel taxon, ‘Candidatus Phytoplasma balanitae’.


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2806-2812 ◽  
Author(s):  
Asif Hameed ◽  
Mei-Hua Hung ◽  
Shih-Yao Lin ◽  
Yi-Han Hsu ◽  
You-Cheng Liu ◽  
...  

A Gram-positive, spore-forming, aerobic, rod-shaped, xylanolytic bacterium designated strain CC-Alfalfa-35T was isolated from the rhizosphere of Medicago sativa L. in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain CC-Alfalfa-35T was affiliated to the genus Cohnella . Strain CC-Alfalfa-35T shared 95.3 % pairwise 16S rRNA gene sequence similarity to the type strain of the type species of the genus Cohnella ( Cohnella thermotolerans DSM 17683T) besides showing a similarity of 97.4–93.6 % with other recognized species of the genus Cohnella . The DNA–DNA hybridization value between CC-Alfalfa-35T and Cohnella thailandensis KCTC 22296T was 37.7 %±1.7 % (reciprocal value, 55.7 %±3.0 %). Predominant cellular fatty acids were iso-C16 : 0 and anteiso-C15 : 0. The polar lipid profile constituted diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, lysyl-phosphatidylglycerol, three unidentified phospholipids and three unidentified aminophospholipids. The major respiratory quinone was MK-7 and the DNA G+C content was 58.3 mol%. Strain CC-Alfalfa-35T contained meso-diaminopimelic acid as the major diamino acid in the cell-wall peptidoglycan. Based on the polar lipid and fatty acid profiles, which were in line with those of C. thermotolerans DSM 17683T, coupled with additional distinguishing genotypic, phenotypic and chemotaxonomic features, strain CC-Alfalfa-35T is proposed to represent a novel species within the genus Cohnella , for which the name Cohnella formosensis sp. nov. is proposed. The type strain is CC-Alfalfa-35T ( = JCM 18405T = BCRC 80428T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3104-3108 ◽  
Author(s):  
De-Chao Zhang ◽  
Rosa Margesin

Two Gram-stain-negative, non-motile, rod-shaped bacterial strains, designated BM5-7T and BM9-1T were isolated from soil of the root system of a mangrove forest. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two isolates belong to the genus Martelella . The chemotaxonomic characteristics of these isolates included the presence of C19 : 0 cyclo ω8c and C18 : 1ω7c as the major cellular fatty acids and Q-10 as the dominant ubiquinone. The genomic DNA G+C contents of strains BM5-7T and BM9-1T were 61.0 and 59.7 mol% (HPLC method), respectively. The 16S rRNA gene sequence similarity between the two strains was 98.1 %, but DNA–DNA hybridization indicated 44 % relatedness. Strains BM5-7T and BM9-1T exhibited 16S rRNA gene sequence similarities of 98.0–99.2 % and 97.7–98.1 %, respectively, with type strains of Martelella endophytica and Martelella mediterranea . Combined data from phenotypic, phylogenetic and DNA–DNA relatedness studies demonstrated that strains BM5-7T and BM9-1T are representatives of two novel species of the genus Martelella , for which the names Martelella radicis sp. nov. (type strain BM5-7T = DSM 28101T = LMG 27958T) and Martelella mangrovi sp. nov. (type strain BM9-1T = DSM 28102T = LMG 27959T) are proposed.


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2682-2687 ◽  
Author(s):  
Shi-Kai Deng ◽  
Xiao-Mei Ye ◽  
Cui-Wei Chu ◽  
Jin Jiang ◽  
Jian He ◽  
...  

A Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, aerobic bacterial strain, designated BUT-2T, was isolated from activated sludge of one herbicide-manufacturing wastewater-treatment facility in Kunshan, Jiangsu province, China, and subjected to polyphasic taxonomic studies. Analysis of the 16S rRNA gene sequence indicated that strain BUT-2T shared the highest similarity with Chryseomicrobium amylolyticum (98.98 %), followed by Chryseomicrobium imtechense (98.88 %), with less than 96 % similarlity to members of the genera Paenisporosarcina , Planococcus , Sporosarcina and Planomicrobium . Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain BUT-2T clustered with C. amylolyticum JC16T and C. imtechense MW10T, occupying a distinct phylogenetic position. The major fatty acid (>10 % of total fatty acids) type of strain BUT-2T was iso-C15 : 0. The quinone system comprised menaquinone MK-7 (77.8 %), MK-6 (11.9 %) and MK-8 (10.3 %). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and some unidentified phospholipids. The cell-wall peptidoglycan type of strain BUT-2T was l-Orn-d-Glu. The genomic DNA G+C content of strain BUT-2T was 48.5 mol%. Furthermore, the DNA–DNA relatedness in hybridization experiments against the reference strain was lower than 70 %, confirming that strain BUT-2T did not belong to previously described species of the genus Chryseomicrobium . On the basis of its morphological, physiological and chemotaxonomic characteristics as well as phylogenetic analysis, strain BUT-2T is considered to represent a novel species of the genus Chryseomicrobium , for which the name Chryseomicrobium aureum sp. nov. is proposed. The type strain is BUT-2T ( = CCTCC AB2013082T = KACC 17219T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 39-45 ◽  
Author(s):  
Byoung-Jun Kim ◽  
Seok-Hyun Hong ◽  
Yoon-Hoh Kook ◽  
Bum-Joon Kim

A previously undescribed, slowly growing, scotochromogenic mycobacterial strain (49061T) was isolated from a patient with pulmonary infections during the hsp65-sequence-based identification of Korean clinical isolates. Its 16S rRNA gene sequence was unique and the phylogenetic analysis based on 16S rRNA gene sequence (1393 bp) placed the organism into the slow-growing Mycobacterium group close to Mycobacterium gordonae (99.0 % sequence similarity). Growth characteristics and acid-fastness also supported the placement of this species into the genus Mycobacterium . Phenotypically, this strain was generally similar to Mycobacterium gordonae ; however, of particular interest, the optimal growth temperature of strain 49061T was 25–30 °C, and it was not able to grow at 37 °C on 7H10 agar slants. Unique MALDI-TOF MS profiles of lipids, phylogenetic analysis based on another two gene sequences (hsp65 and rpoB) and a low DNA–DNA relatedness (46.52±0.7) strongly supported the taxonomic status of this strain as a representative of a distinct species from M. gordonae . It was concluded that the strain represents a novel species for which the name Mycobacterium paragordonae is proposed with the type strain 49061T ( = JCM 18565T = KCTC 29126T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2267-2273 ◽  
Author(s):  
MooChang Kook ◽  
Heung-Min Son ◽  
Tae-Hoo Yi

Two novel strains, THG-C26T and THG-C31T, were characterized using a polyphasic approach to determine their taxonomic positions. These two isolates were aerobic, Gram-stain-positive, non-motile, non-spore-forming and rod-shaped. 16S rRNA gene sequences and phenotypic features including chemotaxonomic characteristics indicated that the two isolates clearly represented members of the genus Microbacterium . The quinone systems of strains THG-C26T and THG-C31T contained MK-12/MK-13 as major menaquinones. The diamino acid in cell-wall hydrolysates of the two strains was ornithine. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The polyamine pattern had spermidine as the predominant component. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and unidentified glycolipids. Phenotypic characteristics supported the affiliation of strains THG-C26T and THG-C31T to the genus Microbacterium . Chemotaxonomic data and DNA–DNA relatedness values allowed differentiation of these strains from other species of the genus Microbacterium with validly published names. Strains THG-C26T and THG-C31T showed highest 16S rRNA gene sequence similarities with Microbacterium resistens DMMZ 1710T (98.5 %) and Microbacterium trichothecenolyticum IFO 15077T (98.8 %), respectively, and the 16S rRNA gene sequence similarity between them was 99.0 %. DNA–DNA hybridization values between the novel isolates and strains of other species of the genus Microbacterium with validly published names were 4–25 %. Therefore, strains THG-C26T and THG-C31T are considered to represent two novel species of the genus Microbacterium , for which the names Microbacterium kyungheense sp. nov. [type strain THG-C26T ( = KACC 17124T = JCM 18735T)] and Microbacterium jejuense sp. nov. [type strain THG-C31T ( = KACC 17123T = JCM 18734T)] are proposed.


2020 ◽  
Vol 70 (6) ◽  
pp. 3801-3808 ◽  
Author(s):  
Huibin Lu ◽  
Tongchu Deng ◽  
Feifei Liu ◽  
Yonghong Wang ◽  
Xunan Yang ◽  
...  

Six Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and motile strains (FT9WT, FT25W, FT26WT, FT109WT, FT134W and CY42WT) were isolated from subtropical streams in China. Comparisons based on 16S rRNA gene sequences showed that the six strains shared similarities of less than 98.1 % with other species within the family Oxalobacteraceae and formed two separately distinct clades in phylogenetic trees. The 16S rRNA gene sequence similarities between strains FT9WT and FT25W, and between strains FT109WT and FT134W were both 99.7 %. The genome sizes of strains FT9WT, FT25W, FT26WT, FT109WT, FT134W and CY42WT were 6.45, 6.45, 6.54, 6.43, 6.52 and 6.74 Mbp with G+C contents of 64.0, 64.0, 63.8, 63.2, 63.2 and 62.5 %, respectively. The calculated pairwise average nucleotide (ANI) values among the six strains and other related species were less than 93.9 %, except that the values were 99.9 % between strains FT9WT and FT25W, 98.2 % between strains FT109WT and FT134W, and 95.0 and 95.1 % between strain FT26WT and strains FT9WT and FT25W, respectively. However, strain FT26WT shared 16S rRNA gene sequence similarities of only 98.3 and 98.2 % with FT9WT and FT25W, respectively. The respiratory quinone of the six strains was determined to be Q-8. The major fatty acids were C16 : 1 ω7c, C16 : 0 and C12 : 0. The predominant polar lipids included phosphatidylethanolamine and phosphatidylglycerol. Considering the phenotypic, biochemical, genotypic and ANI data, strains FT9WT and FT25W, and FT109WT and FT134W may belong to the same species, respectively. Although the pairwise ANI values between strain FT26WT and each of strains FT9WT and FT25W were located in the transition region of species demarcation, the dissimilarities among them indicated that strain FT26WT could represent an independent novel species. The reconstructed phylogenomic tree based on a concatenation of 92 core genes showed that the six strains clustered closely with Duganella sacchari Sac-22T and Duganella radicis KCTC 22382T, and supported that these six strains belong to the genus Duganella . The names Duganella albus sp. nov. (type strain FT9WT=GDMCC 1.1637T=KACC 21313T), Duganella aquatilis sp. nov. (type strain FT26WT=GDMCC 1.1641T=KACC 21315T), Duganella pernnla sp. nov. (type strain FT109WT=GDMCC 1.1688T=KACC 21480T) and Duganella levis sp. nov. (type strain CY42WT=GDMCC 1.1673T=KACC 21465T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document