scholarly journals Hartmannibacter diazotrophicus gen. nov., sp. nov., a phosphate-solubilizing and nitrogen-fixing alphaproteobacterium isolated from the rhizosphere of a natural salt-meadow plant

2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3160-3167 ◽  
Author(s):  
Christian Suarez ◽  
Stefan Ratering ◽  
Rita Geissler-Plaum ◽  
Sylvia Schnell

A phosphate-mobilizing, Gram-negative bacterium was isolated from rhizospheric soil of Plantago winteri from a natural salt meadow as part of an investigation of rhizospheric bacteria from salt-resistant plant species and evaluation of their plant-growth-promoting abilities. Cells were rods, motile, strictly aerobic, oxidase-positive and catalase-negative. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain E19T was distinct from other taxa within the class Alphaproteobacteria . Strain E19T showed less than 93.5 % 16S rRNA gene sequence similarity with members of the genera Rhizobium (≤93.5 %), Labrenzia (≤93.1 %), Stappia (≤93.1 %), Aureimonas (≤93.1 %) and Mesorhizobium (≤93.0 %) and was most closely related to Rhizobium rhizoryzae (93.5 % 16S rRNA gene sequence similarity to the type strain). The sole respiratory quinone was Q-10, and the polar lipids comprised phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, an aminolipid and an unidentified phospholipid. Major fatty acids were C18 : 1ω7c (71.4 %), summed feature 2 (C14 : 0 3-OH and/or iso-C16 : 1; 8.3 %), C20 : 0 (7.9 %) and C16 : 0 (6.1 %). The DNA G+C content of strain E19T was 59.9±0.7 mol%. The capacity for nitrogen fixation was confirmed by the presence of the nifH gene and the acetylene reduction assay. On the basis of the results of our polyphasic taxonomic study, the new isolate represents a novel genus and species, for which the name Hartmannibacter diazotrophicus gen. nov., sp. nov. is proposed. The type strain of Hartmannibacter diazotrophicus is E19T ( = LMG 27460T = KACC 17263T).

2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2763-2769 ◽  
Author(s):  
Yong-Taek Jung ◽  
Sooyeon Park ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-negative, coccoid or oval-shaped and gliding bacterial strain, designated HDM-25T, belonging to the Alphaproteobacteria , was isolated from a tidal flat sediment of the Yellow Sea, Korea, and was subjected to a polyphasic taxonomic study. Strain HDM-25T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain HDM-25T fell within the clade comprising the species of the genus Paracoccus , clustering with the type strain of Paracoccus aminophilus , with which it exhibited the highest 16S rRNA gene sequence similarity (97.7 %). The 16S rRNA gene sequence similarity between strain HDM-25T and the type strains of the other species of Paracoccus was 93.6–97.0 %. The DNA G+C content was 65.9 mol% and the mean DNA–DNA relatedness between strain HDM-25T and the type strain of P. aminophilus was 10.7±2.7 % (9.9±4.0 %, reciprocal analysis). Strain HDM-25T contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0 as the major fatty acids. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminolipid, an unidentified glycolipid and an unidentified lipid. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain HDM-25T is distinguishable from other species of the genus Paracoccus . On the basis of the data presented, strain HDM-25T is considered to represent a novel species of the genus Paracoccus , for which the name Paracoccus lutimaris sp. nov. is proposed. The type strain is HDM-25T ( = KCTC 42007T = CECT 8525T).


Author(s):  
Magne Bisgaard ◽  
Henrik Christensen

Avian Pasteurella -like organisms tentatively named taxon 14 of Bisgaard have been obtained from different lesions in birds including ducks, turkeys, pigeons, geese and peafowl. Taxon 32 of Bisgaard was first reported from lesions in pigeon hawks (Accipiter gentiles). The taxon isolated from kestrels (Falco tinnunculus) was V-factor dependent and originally reported as Haemophilus-like. The results of 16S rRNA gene sequence based phylogenetic analysis recently indicated that the taxa 14 and 32 and the kestrel taxon were located in a monophyletic group distantly related to [ Pasteurella ] testudinis with 92–93 % 16S rRNA gene sequence similarity. Comparison of 41 conserved protein sequences confirmed the monophyletic nature of the three taxa. Partial rpoB gene sequencing of 43 strains of taxon 14, taxon 32 and the kestrel taxon showed a relationship between taxon 14 and 32 of 88.2–90.0 % similarity. Within taxon 14, 93.3–100 % similarity was found, whereas the two strains of taxon 32 showed 99.8 % rpoB similarity. Sequencing of 16S rRNA genes of strains representing the rpoB diversity outlined showed more than 98 % similarity within taxon 14 and 99.4 % within taxon 32, while the kestrel strains showed 100 % 16S rRNA gene sequence similarity. A new genus, Spirabiliibacterium gen. nov., is proposed to include taxon 14, taxon 32 and the kestrel taxon. Phenotypically, members of the genus Spirabiliibacterium can be separated from members of the genera Aggregatibacter , Avibacterium and Volucribacter by maltose, oxidase and methyl red, respectively. Two or more phenotypic characters separate members of the genus Spirabiliibacterium from members of the remaining 27 genera of the family Pasteurellaceae .The G+C content of DNA ranged from 42.9 to 51.2 % (genome sequence) for members of the genus Spirabiliibacterium. The type strain of Spirabiliibacterium mucosae (taxon 14 of Bisgaard) is 20609/3T (=CCUG 16499T=DSM 111429T=HIM 913-3T). The type strain of Spirabiliibacterium pneumoniae is HPA106T (=CCUG 74731T=DSM 111430T). The type strain of Spirabiliibacterium falconis (kestrel taxon) is IPDH 2176T (=NCTC 11878T=CCUG 28587T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 339-344 ◽  
Author(s):  
Rosa Margesin ◽  
De-Chao Zhang

A Gram-staining-negative, red-pigmented, psychrophilic, non-motile and rod-shaped bacterial strain, designated W1T, was isolated from soil and subjected to a polyphasic taxonomic investigation. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain W1T grouped with members of the genus Pedobacter and formed a distinct cluster with the type strain of Pedobacter composti (97.8 % 16S rRNA gene sequence similarity). Levels of 16S rRNA gene sequence similarity between strain W1T and the type strains of all other recognized species of the genus Pedobacter available at the time of writing were <97.0 %. The predominant cellular fatty acids (≥10 %) of strain W1T were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and anteiso-C15 : 0. The only menaquinone was MK-7. The genomic DNA G+C content was 39.0 mol% (HPLC). Combined data from phenotypic, phylogenetic and DNA–DNA relatedness studies demonstrated that strain W1T is a representative of a novel species of the genus Pedobacter , for which we propose the name Pedobacter ruber sp. nov. The type strain is W1T ( = DSM 24536T = LMG 26240T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2442-2448 ◽  
Author(s):  
Stefanie P. Glaeser ◽  
John A. McInroy ◽  
Hans-Jürgen Busse ◽  
Peter Kämpfer

A Gram-positive-staining, aerobic, endospore-forming bacterium, strain P-207T, was isolated from a rhizosphere soil sample in Auburn, AL, USA. On the basis of 16S rRNA gene sequence comparisons, strain P-207T was grouped in the vicinity of representatives of the genera Virgibacillus , Ornithinibacillus , Cerasibacillus , Lentibacillus and Oceanobacillus , but could not be assigned clearly to any of these genera. The highest similarity was found to the sequence of Virgibacillus carmonensis LMG 20964T (94.4 %); however, the 16S rRNA gene sequence similarity to the type strain of the type species of Virgibacillus , Virgibacillus pantothenticus , was only 92.9 %. The quinone system of strain P-207T consisted predominantly of menaquinone MK-7. The polar lipid profile exhibited the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine and moderate to minor amounts of several unidentified phospholipids, glycolipids and phosphoglycolipids, an aminophospholipid and an aminolipid. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid and the polyamine pattern contained predominantly spermidine and spermine. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and iso-C15 : 0. The G+C content of the genomic DNA was 34 mol%. Because of the low sequence similarity of strain P-207T to all representatives of Virgibacillus , Ornithinibacillus , Cerasibacillus , Lentibacillus and Oceanobacillus , which was always <95 %, and its unique lipid pattern, we propose that strain P-207T represents a novel species in a new genus, for which the name Pseudogracilibacillus auburnensis gen. nov., sp. nov. is proposed. The type strain of Pseudogracilibacillus auburnensis is P-207T ( = CCM 8509T = LMG 28212T = CIP 110797T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1495-1500 ◽  
Author(s):  
Min Wu ◽  
Guiqin Yang ◽  
Zhen Yu ◽  
Li Zhuang ◽  
Yingqiang Jin ◽  
...  

Two Gram-stain-positive, rod-shaped and endospore-forming bacteria, designated WM-1T and WM-4, were isolated from a paddy soil and a forest soil, respectively, in South China. Comparative 16S rRNA gene sequence analyses showed that both strains were members of the genus Oceanobacillus and most closely related to Oceanobacillus chironomi LMG 23627T with pairwise sequence similarity of 96.0 %. The isolates contained menaquinone-7 (MK-7) as the respiratory quinone and anteiso-C15 : 0, anteiso-C17 : 0 and iso-C15 : 0 as the major fatty acids (>10 %). Polar lipids consisted of a predominance of diphosphatidylglycerol and moderate to minor amounts of phosphatidylglycerol and phosphatidylinositol. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The DNA G+C content was 38.6–39.2 mol%. The 16S rRNA gene sequence of strain WM-1T displayed 99.7 % similarity to that of strain WM-4, and DNA–DNA hybridization between the two strains showed a relatedness value of 91 %. Based on the results of this polyphasic study, strains WM-1T and WM-4 represent a novel species in the genus Oceanobacillus , for which the name Oceanobacillus luteolus sp. nov. is proposed. The type strain is WM-1T ( = KCTC 33119T = CGMCC 1.12406T).


2019 ◽  
Vol 69 (4) ◽  
pp. 1001-1008 ◽  
Author(s):  
Yuanyuan Tian ◽  
Chuanyu Han ◽  
Jiangmeihui Hu ◽  
Junwei Zhao ◽  
Chen Zhang ◽  
...  

A novel actinomycete, designated strain NEAU-TCZ24T, was isolated from soil and characterized using a polyphasic approach. The results of phylogenetic analysis based on the 16S rRNA gene sequence indicated that the organism should be assigned to the genus Cellulomonas and formed a stable clade with its closest relatives Cellulomonas terrae JCM 14899T (98.4 % 16S rRNA gene sequence similarity), Cellulomonas xylanilytica JCM 14281T (97.9 %) and Cellulomonas humilata JCM 11945T (97.7 %). The major menaquinones were identified as MK-9(H4) and MK-8(H4). The phospholipid profile was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositolmannoside, a ninhydrin-positiveglycolipid, an unidentified phosphoglycolipid, an unidentified phospholipid and an unidentified lipid. The major fatty acids were identified as anteiso-C15 : 0, C18 : 1ω9c, C16 : 0 and anteiso-C17 : 0. Moreover, morphological and chemotaxonomic properties of NEAU-TCZ24T also confirmed the affiliation of the isolate to the genus Cellulomonas . However, multilocus sequence analysis based on five other house-keeping genes (gyrB, rpoB, recA, relA and atpD), DNA–DNA relatedness, physiological and biochemical data indicated that NEAU-TCZ24T could be distinguished from its closest relatives. Therefore, it is proposed that NEAU-TCZ24T represents a novel species of the genus Cellulomonas , for which the name Cellulomonas rhizosphaerae sp. nov. is proposed. The type strain is NEAU-TCZ24T (=CCTCC AA 2018042T=JCM 32383T).


Author(s):  
Zhipeng Cai ◽  
Huibin Lu ◽  
Youfeng Qian ◽  
Letian Chen ◽  
Meiying Xu

Four Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and motile strains (Y26, Y57T, ZJ14WT and RP18W) were isolated from mariculture fishponds in PR China. Comparisons based on 16S rRNA gene sequences showed that strains Y26 and Y57T share 16S rRNA gene sequence similarities in the range of 95.1−98.5 % with species of the genus Bowmanella , and strains ZJ14WT and RP18W share 16S rRNA gene sequence similarities in the range of 96.7 −98.8 % with species of the genus Amphritea , respectively. The genome sizes of strains Y26, Y57T, ZJ14WT and RP18W were about 4.85, 5.40, 4.70 and 4.70 Mbp with 49.5, 51.7, 51.2 and 51.3 mol% G+C content, respectively. The calculated pairwise OrthoANIu values among strains Y26, Y57T and species of the genus Bowmanella were in the range of 72.6−83.1 %, but the value between strains Y26 and Y57T was 96.2 %. The pairwise OrthoANIu values among strains ZJ14WT, RP18W and other species of the genus Amphritea were all less than 93.9 %, but the value between strains ZJ14WT and RP18W was 99.3 %. Q-8 was the major respiratory quinone of strains Y26, Y57T, ZJ14WT and RP18W, and the major fatty acids of these strains were all C16 : 1 ω7c, C16 : 0 and C18 : 1 ω7c. The predominant polar lipids of strains Y26 and Y57T included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylinositol, but strains ZJ14WT and RP18W only contained phosphatidylethanolamine and phosphatidylglycerol. Combining phenotypic, biochemical and genotypic characteristics, strains Y26 and Y57T should belong to the same species and represent a novel member of the genus Bowmanella , and strains ZJ14WT and RP18W should belong to the same species and represent a novel member of the genus Amphritea , for which the names Bowmanella yangjiangensis sp. nov. (type strain Y57T=GDMCC 1.2180T=KCTC 82439T) and Amphritea pacifica sp. nov. (type strain ZJ14WT=GDMCC 1.2203T=KCTC 82438T) are proposed.


Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Dominique Clermont ◽  
Alexis Criscuolo ◽  
...  

A Gram-stain-positive, aerobic, endospore-forming bacterial strain, isolated from the rhizosphere of Zea mays, was studied for its detailed taxonomic allocation. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-447T was shown to be a member of the genus Paenibacillus , most closely related to the type strain of Paenibacillus solanacearum (97.8 %). The 16S rRNA gene sequence similarity values to all other Paenibacillus species were below 97.0 %. DNA–DNA hybridization (DDH) values with the type strain of P. solanacearum were 35.9 % (reciprocal 27%), respectively. The average nucleotide identity and in silico DDH values with the type strain of P. solanacearum were 84.86 and 28.9 %, respectively. The quinone system of strain JJ-447T consisted exclusively of menaquinones and the major component was MK-7 (96.4 %) but minor amounts of MK–6 (3.6 %) were detected as well. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminolipid. Major fatty acids were iso- and anteiso-branched with the major compounds anteiso-C15 : 0 and iso-C15 : 0. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-447T from the most closely related species on the basis of d-glucose, l-arabinose and d-mannose assimilation and other physiological tests. Thus, JJ-447T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus allorhizosphaerae sp. nov. is proposed, with JJ-447T (=LMG 31601T=CCM 9021T=CIP 111802T) as the type strain.


Author(s):  
Ji Young Choi ◽  
Seung-Hyeon Choi ◽  
Jam-Eon Park ◽  
Ji-Sun Kim ◽  
Jiyoung Lee ◽  
...  

An obligately anaerobic, non-motile, Gram-negative and rod-shaped strain (AGMB03916T) was isolated from faeces of a 2-week-old piglet raised at the National Institute of Animal Science in Wanju, Republic of Korea. Growth of strain AGMB03916T occurred at 30–45 °C (optimum, 37 °C), at pH 6–9 (optimum, pH 8) and in the presence of 0.5–1.0 % (w/v) NaCl. Based on the results of 16S rRNA gene sequence analyses, strain AGMB03916T was closely related to two validly published species of the genus Phocaeicola , Phocaeicola plebeius and Phocaeicola coprocola . The 16S rRNA gene sequence similarity of strain AGMB03916T compared to P. plebeius M12T (=KCTC 5793T) and P. coprocola M16T (=KCTC 5443T) were 96.3 and 95.0 %, respectively. The genomic DNA G+C content of strain AGMB03916T was 46.4 mol%. The average nucleotide identity values between strain AGMB03916T and the reference strains were 74.9–78.5 %. Cells were able to utilize d-glucose, lactose, sucrose, maltose, salicin, aesculin hydrolysis, cellobiose and raffinose. The major end product of metabolism was acetate. The major cellular fatty acids (>10 %) of the isolate were iso-C15 : 0, anteiso-C15 : 0, C16 : 0, C16 : 0 3-OH and summed feature 11 (iso-C17 : 0 3-OH and/or C18 : 2 DMA). On the basis of the genotypic, biochemical, chemotaxonomic, phenotypic and phylogenetic data, strain AGMB03916T represents a novel species of the genus Phocaeicola , for which the name Phocaeicola faecicola sp. nov. is proposed. The type strain is AGMB03916T (=KCTC 25014T=GDMCC 1.2574T).


Sign in / Sign up

Export Citation Format

Share Document