Protaetiibacter larvae sp. nov. and Agromyces intestinalis sp. nov., isolated from the gut of larvae of Protaetia brevitarsis seulensis, reclassification of Lysinimonas yzui as Pseudolysinimonas yzui comb. nov. and emended description of the genus Pseudolysinimonas

Author(s):  
Shin Ae Lee ◽  
Jun Heo ◽  
Mi Ae Kim ◽  
Tomohiko Tamura ◽  
Satomi Saitou ◽  
...  

Two bacterial strains, FWR-8T and CFWR-9T, were isolated from the gut of larvae of Protaetia brevitarsis seulensis that were raised at the National Institute of Agricultural Sciences, Wanju-gun, Republic of Korea. Both strains were strictly aerobic, Gram-stain-positive and non-motile. Strain FWR-8T possessed the highest sequence similarity (98.7 %) to that of Protaetiibacter intestinalis 2DFWR-13T and the phylogenetic tree revealed that strain FWR-8T formed a cluster with Ptb. intestinalis 2DFWR-13T. Pseudolysinimonas kribbensis MSL-13T and Lysinimonas yzui N7XX-4T shared a high 16S rRNA gene sequence similarity (97.8 %) and formed a cluster adjacent to the cluster that included Ptb. intestinalis 2DFWR-13T. The 16S rRNA gene sequence of strain CFWR-9T exhibited the highest similarity (97.7 %) to that of Agromyces binzhouensis OAct353T and the phylogenetic tree indicated that strain CFWR-9T formed one independent cluster with A. binzhouensis OAct353T that was within the radius of the genus Agromyces . The peptidoglycan type, major fatty acids, major menaquinones and total polar lipids of strain FWR-8T were characterized as type B1, iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0, MK-15, MK-16 and MK-14, and diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and one unidentified lipid, respectively. Those from strain CFWR-9T were type B1, iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0, MK-11, MK-12 and MK-10, and diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and one unidentified lipid, respectively. Based on the phenotypic and genotypic data, strains FWR-8T and CFWR-9T each represent a novel species within the genera Protaetiibacter and Agromyces , respectively. For these species, the names Protaetiibacter larvae sp. nov. and Agromyces intestinalis sp. nov. have been proposed, with the type strains FWR-8T (=KACC 19322T=NBRC 113051T) and CFWR-9T (=KACC 19306T=NBRC 113046T), respectively. Our results also justify a reclassification of Lysinimonas yzui as Pseudolysinimonas yzui comb. nov. and an emended description of the genus Pseudolysinimonas isprovided.

2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1952-1957 ◽  
Author(s):  
Ji Hee Lee ◽  
Keun Sik Baik ◽  
Duwoon Kim ◽  
Chi Nam Seong

Two motile, rod-shaped and agarolytic bacterial strains, designated PSC101T and KDW4T, were isolated from seawater and gut microflora of abalone, respectively, collected from the South Sea (Republic of Korea). Cells were Gram-stain-negative, aerobic, catalase- and oxidase-positive. Strains PSC101T and KDW4T showed high 16S rRNA gene sequence similarity to each other (98.6 %). Psychrosphaera saromensis SA4-48T was the nearest neighbour of strains PSC101T and KDW4T with 96.6 % and 97.0 % 16S rRNA gene sequence similarity, respectively. DNA–DNA relatedness among strains PSC101T, KDW4T and Psychrosphaera saromensis KCTC 23240T was less than 70 %. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates belonged to the genus Psychrosphaera and formed a distinct phyletic line from Psychrosphaera saromensis SA4-48T. The common major cellular fatty acids of the two novel isolates were C16 : 0, C17 : 1ω8c and summed feature 3 (C16 : 1ω6c/C16 : 1ω7c). Flexirubin-type pigments were absent. The main ubiquinone was UQ-8 and the DNA G+C content of strains PSC101T and KDW4T was 49.5 and 42.5 mol%, respectively. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and an unidentified amino lipid. On the basis of the polyphasic characterization of the two strains, it is suggested that the two isolates represent two novel species of the genus Psychrosphaera , for which the names Psychrosphaera aestuarii sp. nov. (type strain, PSC101T = KCTC 32274T = JCM 19496T) and Psychrosphaera haliotis sp. nov. (type strain, KDW4T = KCTC 22500T = JCM 16340T) are proposed. An emended description of the genus Psychrosphaera is also proposed.


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2897-2902 ◽  
Author(s):  
Ishwinder Kaur ◽  
Chandandeep Kaur ◽  
Fazlurrahman Khan ◽  
Shanmugam Mayilraj

A Gram-negative, non-motile bacterial strain that formed straight rods and straw yellow colonies, designated FCS-5T, was isolated from a marine sediment from the Arabian Sea. The isolate exhibited most of the phenotypic properties expected for a member of the genus Flavobacterium . The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, C17 : 1ω9c and summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c). The only isoprenoid quinone was MK-6. The only polyamine was homospermidine and the major polar lipid was phosphatidylethanolamine. The G+C content of the genomic DNA was 32.4 mol%. According to 16S rRNA gene sequence analysis, strain FCS-5T belonged to the genus Flavobacterium and exhibited 99.3 % 16S rRNA gene sequence similarity with Flavobacterium beibuense F44-8T and 90.9–94.6 % sequence similarity with other members of the genus Flavobacterium . The results of physiological and biochemical tests allowed the discrimination of the isolate from its phylogenetic relatives. Strain FCS-5T is a representative of a novel species of the genus Flavobacterium , for which the name Flavobacterium rakeshii sp. nov. is proposed. The type strain is FCS-5T ( = MTCC 10967T = JCM 17928T). An emended description of F. beibuense is also proposed.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


2019 ◽  
Vol 69 (4) ◽  
pp. 1001-1008 ◽  
Author(s):  
Yuanyuan Tian ◽  
Chuanyu Han ◽  
Jiangmeihui Hu ◽  
Junwei Zhao ◽  
Chen Zhang ◽  
...  

A novel actinomycete, designated strain NEAU-TCZ24T, was isolated from soil and characterized using a polyphasic approach. The results of phylogenetic analysis based on the 16S rRNA gene sequence indicated that the organism should be assigned to the genus Cellulomonas and formed a stable clade with its closest relatives Cellulomonas terrae JCM 14899T (98.4 % 16S rRNA gene sequence similarity), Cellulomonas xylanilytica JCM 14281T (97.9 %) and Cellulomonas humilata JCM 11945T (97.7 %). The major menaquinones were identified as MK-9(H4) and MK-8(H4). The phospholipid profile was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositolmannoside, a ninhydrin-positiveglycolipid, an unidentified phosphoglycolipid, an unidentified phospholipid and an unidentified lipid. The major fatty acids were identified as anteiso-C15 : 0, C18 : 1ω9c, C16 : 0 and anteiso-C17 : 0. Moreover, morphological and chemotaxonomic properties of NEAU-TCZ24T also confirmed the affiliation of the isolate to the genus Cellulomonas . However, multilocus sequence analysis based on five other house-keeping genes (gyrB, rpoB, recA, relA and atpD), DNA–DNA relatedness, physiological and biochemical data indicated that NEAU-TCZ24T could be distinguished from its closest relatives. Therefore, it is proposed that NEAU-TCZ24T represents a novel species of the genus Cellulomonas , for which the name Cellulomonas rhizosphaerae sp. nov. is proposed. The type strain is NEAU-TCZ24T (=CCTCC AA 2018042T=JCM 32383T).


Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Dominique Clermont ◽  
Alexis Criscuolo ◽  
...  

A Gram-stain-positive, aerobic, endospore-forming bacterial strain, isolated from the rhizosphere of Zea mays, was studied for its detailed taxonomic allocation. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-447T was shown to be a member of the genus Paenibacillus , most closely related to the type strain of Paenibacillus solanacearum (97.8 %). The 16S rRNA gene sequence similarity values to all other Paenibacillus species were below 97.0 %. DNA–DNA hybridization (DDH) values with the type strain of P. solanacearum were 35.9 % (reciprocal 27%), respectively. The average nucleotide identity and in silico DDH values with the type strain of P. solanacearum were 84.86 and 28.9 %, respectively. The quinone system of strain JJ-447T consisted exclusively of menaquinones and the major component was MK-7 (96.4 %) but minor amounts of MK–6 (3.6 %) were detected as well. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminolipid. Major fatty acids were iso- and anteiso-branched with the major compounds anteiso-C15 : 0 and iso-C15 : 0. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-447T from the most closely related species on the basis of d-glucose, l-arabinose and d-mannose assimilation and other physiological tests. Thus, JJ-447T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus allorhizosphaerae sp. nov. is proposed, with JJ-447T (=LMG 31601T=CCM 9021T=CIP 111802T) as the type strain.


Author(s):  
Ji Young Choi ◽  
Seung-Hyeon Choi ◽  
Jam-Eon Park ◽  
Ji-Sun Kim ◽  
Jiyoung Lee ◽  
...  

An obligately anaerobic, non-motile, Gram-negative and rod-shaped strain (AGMB03916T) was isolated from faeces of a 2-week-old piglet raised at the National Institute of Animal Science in Wanju, Republic of Korea. Growth of strain AGMB03916T occurred at 30–45 °C (optimum, 37 °C), at pH 6–9 (optimum, pH 8) and in the presence of 0.5–1.0 % (w/v) NaCl. Based on the results of 16S rRNA gene sequence analyses, strain AGMB03916T was closely related to two validly published species of the genus Phocaeicola , Phocaeicola plebeius and Phocaeicola coprocola . The 16S rRNA gene sequence similarity of strain AGMB03916T compared to P. plebeius M12T (=KCTC 5793T) and P. coprocola M16T (=KCTC 5443T) were 96.3 and 95.0 %, respectively. The genomic DNA G+C content of strain AGMB03916T was 46.4 mol%. The average nucleotide identity values between strain AGMB03916T and the reference strains were 74.9–78.5 %. Cells were able to utilize d-glucose, lactose, sucrose, maltose, salicin, aesculin hydrolysis, cellobiose and raffinose. The major end product of metabolism was acetate. The major cellular fatty acids (>10 %) of the isolate were iso-C15 : 0, anteiso-C15 : 0, C16 : 0, C16 : 0 3-OH and summed feature 11 (iso-C17 : 0 3-OH and/or C18 : 2 DMA). On the basis of the genotypic, biochemical, chemotaxonomic, phenotypic and phylogenetic data, strain AGMB03916T represents a novel species of the genus Phocaeicola , for which the name Phocaeicola faecicola sp. nov. is proposed. The type strain is AGMB03916T (=KCTC 25014T=GDMCC 1.2574T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2684-2689 ◽  
Author(s):  
V. Venkata Ramana ◽  
P. Shalem Raj ◽  
L. Tushar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two strains (JA643T and JA755) of Gram-stain-negative, facultatively anaerobic phototrophic, bacteria capable of growth at low temperatures (10–15 °C) were isolated from freshwater streams from different geographical regions of India. Both strains contain bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid (PL), unidentified amino lipids (AL1–AL6, AL9) and an unidentified lipid (L1) were the polar lipids present in both strains. The major cellular fatty acid was C18 : 1ω7c (76–79 % of the total). Bacteriohopane derivatives (BHD1,2), unidentified hopanoids (UH1–5), diplopterol (DPL) and diploptene (DPE) were the major hopanoids of both strains. The DNA G+C content was 64.2–64.5 mol%. 16S rRNA gene sequence-based phylogenetic analysis showed that both strains are closely related to the genus Rhodomicrobium and clustered with Rhodomicrobium vannielii DSM 162T (99 % sequence similarity). However, both strains exhibited only 46.1 % DNA–DNA hybridization with R. vannielii DSM 162T. Strains JA643T and JA755 shared >99 % 16S rRNA gene sequence similarity and were >85 % related on the basis of DNA–DNA hybridization; they are therefore considered to represent a novel species in the genus Rhodomicrobium , for which the name Rhodomicrobium udaipurense sp. nov. is proposed. The type strain is JA643T ( = KCTC 15219T = NBRC 109057T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4006-4011 ◽  
Author(s):  
Yirang Cho ◽  
Hyunwoo Chung ◽  
Gwang Il Jang ◽  
Dong Han Choi ◽  
Jae Hoon Noh ◽  
...  

A Gram-staining-negative, non-motile, spore-forming, rod-shaped, marine bacterial strain, CL-KR2T, was isolated from tropical seawater near Kosrae, an island in the Federated States of Micronesia. Analysis of the 16S rRNA gene sequence of strain CL-KR2T revealed a clear affiliation with the genus Gracilimonas . Based on phylogenetic analysis, strain CL-KR2T showed the closest phylogenetic relationship to Gracilimonas tropica CL-CB462T, with 16S rRNA gene sequence similarity of 96.6 %. DNA–DNA relatedness between strain CL-KR2T and G. tropica CL-CB462T was 6.7 % (reciprocal 9.5 %). Strain CL-KR2T grew in the presence of 1–20 % sea salts and the optimal salt concentration was 3.5–5 %. The temperature and pH optima for growth were 35 °C and pH 7.5. The major cellular fatty acids (≥10.0 %) of strain CL-KR2T were iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and iso-C17 : 1ω9c and the only isoprenoid quinone was MK-7. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, two unidentified glycolipids and two unidentified lipids. The genomic DNA G+C content of strain CL-KR2T was 43.2 mol%. The combined phenotypic, chemotaxonomic and phylogenetic data showed that strain CL-KR2T could be distinguished from the only member of the genus Gracilimonas with a validly published name. Thus, strain CL-KR2T should be assigned to a novel species in the genus Gracilimonas , for which the name Gracilimonas rosea sp. nov. is proposed. The type strain is CL-KR2T ( = KCCM 90206T = JCM 18898T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 212-218 ◽  
Author(s):  
Mustafa Camas ◽  
Anil Sazak ◽  
Cathrin Spröer ◽  
Hans-Peter Klenk ◽  
Demet Cetin ◽  
...  

A novel actinomycete, strain A4036T, was isolated from a soil sample collected from the Jabi district in Abuja, Nigeria. The taxonomic position of strain A4036T was established using a combination of genotypic and phenotypic analyses. The organism formed extensively branched substrate and aerial hyphae that generated spiral chains of spores with warty surfaces. The cell wall contained meso-diaminopimelic acid and the cell-wall sugars were glucose, madurose, mannose and ribose. The predominant menaquinone was MK-9(H4). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylinositol mannoside, hydroxy-phosphatidylethanolamine, hydroxy-phosphatidylmethylethanolamine, two unidentified phospholipids and four unknown glucosamine-containing phospholipids. The major cellular fatty acids were iso-C16 : 0 2-OH, iso-C16 : 0 and 10-methyl C17 : 0. On the basis of 16S rRNA gene sequence similarity studies, strain A4036T grouped in the genus Nonomuraea , being most closely related to Nonomuraea angiospora IFO 13155T (99.05 %), Nonomuraea candida HMC10T (98.78 %), Nonomuraea kuesteri GW 14-1925T (98.49 %), Nonomuraea endophytica YIM 65601T (98.42 %), Nonomuraea maheshkhaliensis 16-5-14T (98.40 %), Nonomuraea turkmeniaca DSM 43926T (98.38 %), Nonomuraea helvata IFO 14681T (98.29 %), Nonomuraea rubra DSM 43768T (98.10 %) and Nonomuraea salmonea DSM 43678T (98.06 %). Levels of 16S rRNA gene sequence similarity to the type strains of other species of the genus Nonomuraea were <98 %. Despite the high 16S rRNA gene sequence similarities, DNA–DNA relatedness values and phenotypic data demonstrated that strain A4036T was clearly distinguished from all closely related species of the genus Nonomuraea . Thus, this isolate is considered to represent a novel species of the genus Nonomuraea , for which the name Nonomuraea jabiensis sp. nov. is proposed. The type strain is A4036T ( = DSM 45507T = KCTC 19870T).


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2865-2869 ◽  
Author(s):  
Jina Lee ◽  
Na-Ri Shin ◽  
Hae-Won Lee ◽  
Seong Woon Roh ◽  
Min-Soo Kim ◽  
...  

A Gram-negative, motile, facultatively anaerobic rod, designated A36T, was isolated from a dead ark clam found on the south coast of Korea. The isolate was catalase- and oxidase-negative. 16S rRNA gene sequence analysis indicated that strain A36T was most closely related to Kistimonas asteriae KMD 001T, with which it shared 98.2 % 16S rRNA gene sequence similarity. Strain A36T grew optimally at 30–37 °C, with 1 % (w/v) NaCl and at pH 8.0. The major respiratory quinone was ubiquinone-9 (Q-9). The major polar lipids were phosphatidylserine, phosphoethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 2-OH) and C16 : 0. The genomic DNA G+C content was 47.3 mol%. DNA–DNA relatedness between the isolate and K. asteriae JCM 15607T was <25±3 %. Strain A36T represents a novel species of the genus Kistimonas , for which the name Kistimonas scapharcae sp. nov. is proposed. The type strain is A36T ( = KACC 16204T  = JCM 17805T). An emended description of the genus Kistimonas is also provided.


Sign in / Sign up

Export Citation Format

Share Document