scholarly journals Phylogenomics of Ichneumonoidea (Hymenoptera) and implications for evolution of mode of parasitism and viral endogenization

Author(s):  
Barbara J. Sharanowski ◽  
Ryan D. Ridenbaugh ◽  
Patrick K. Piekarski ◽  
Gavin R. Broad ◽  
Gaelen R. Burke ◽  
...  

AbstractIchneumonoidea is one of the most diverse lineages of animals on the planet with more than 48,000 described species and many more undescribed. Parasitoid wasps of this superfamily are beneficial insects that attack and kill other arthropods and are important for understanding diversification and the evolution of life history strategies related to parasitoidism. Further, some lineages of parasitoids within Ichneumonoidea have acquired endogenous virus elements (EVEs) that are permanently a part of the wasp’s genome and benefit the wasp through host immune disruption and behavioral control. Unfortunately, understanding the evolution of viral acquisition, parasitism strategies, diversification, and host immune disruption mechanisms, is deeply limited by the lack of a robust phylogenetic framework for Ichneumonoidea. Here we design probes targeting 541 genes across 91 taxa to test phylogenetic relationships, the evolution of parasitoid strategies, and the utility of probes to capture polydnavirus genes across a diverse array of taxa. Phylogenetic relationships among Ichneumonoidea were largely well resolved with most higher-level relationships maximally supported. We noted codon use biases between the outgroups, Braconidae, and Ichneumonidae and within Pimplinae, which were largely solved through analyses of amino acids rather than nucleotide data. These biases may impact phylogenetic reconstruction and caution for outgroup selection is recommended. Ancestral state reconstructions were variable for Braconidae across analyses, but consistent for reconstruction of idiobiosis/koinobiosis in Ichneumonidae. The data suggest many transitions between parasitoid life history traits across the whole superfamily. The two subfamilies within Ichneumonidae that have polydnaviruses are supported as distantly related, providing strong evidence for two independent acquisitions of ichnoviruses. Polydnavirus capture using our designed probes was only partially successful and suggests that more targeted approaches would be needed for this strategy to be effective for surveying taxa for these viral genes. In total, these data provide a robust framework for the evolution of Ichneumonoidea.

2006 ◽  
Vol 362 (1486) ◽  
pp. 1873-1886 ◽  
Author(s):  
Oliver Krüger

The interactions between brood parasitic birds and their host species provide one of the best model systems for coevolution. Despite being intensively studied, the parasite–host system provides ample opportunities to test new predictions from both coevolutionary theory as well as life-history theory in general. I identify four main areas that might be especially fruitful: cuckoo female gentes as alternative reproductive strategies, non-random and nonlinear risks of brood parasitism for host individuals, host parental quality and targeted brood parasitism, and differences and similarities between predation risk and parasitism risk. Rather than being a rare and intriguing system to study coevolutionary processes, I believe that avian brood parasites and their hosts are much more important as extreme cases in the evolution of life-history strategies. They provide unique examples of trade-offs and situations where constraints are either completely removed or particularly severe.


2017 ◽  
Vol 7 (12) ◽  
pp. 4163-4172 ◽  
Author(s):  
Raphaël Arlettaz ◽  
Philippe Christe ◽  
Michael Schaub

2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Astrid Cruaud ◽  
Roula Jabbour-Zahab ◽  
Gwenaëlle Genson ◽  
Finn Kjellberg ◽  
Noppol Kobmoo ◽  
...  

2021 ◽  
Author(s):  
Stephanie J Spielman ◽  
Molly Miraglia

Multiple sequence alignments (MSAs) represent the fundamental unit of data inputted to most comparative sequence analyses. In phylogenetic analyses in particular, errors in MSA construction have the potential to induce further errors in downstream analyses such as phylogenetic reconstruction itself, ancestral state reconstruction, and divergence estimation. In addition to providing phylogenetic methods with an MSA to analyze, researchers must also specify a suitable evolutionary model for the given analysis. Most commonly, researchers apply relative model selection to select a model from candidate set and then provide both the MSA and the selected model as input to subsequent analyses. While the influence of MSA errors has been explored for most stages of phylogenetics pipelines, the potential effects of MSA uncertainty on the relative model selection procedure itself have not been explored. In this study, we assessed the consistency of relative model selection when presented with multiple perturbed versions of a given MSA. We find that while relative model selection is mostly robust to MSA uncertainty, in a substantial proportion of circumstances, relative model selection identifies distinct best-fitting models from different MSAs created from the same set of sequences. We find that this issue is more pervasive for nucleotide data compared to amino-acid data. However, we also find that it is challenging to predict whether relative model selection will be robust or sensitive to uncertainty in a given MSA. We find that that MSA uncertainty can affect virtually all steps of phylogenetic analysis pipelines to a greater extent than has previously been recognized, including relative model selection.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ping Ye ◽  
Xiaogang Yao ◽  
Jianli Bi ◽  
Guangrong Li ◽  
Wei Liang ◽  
...  

AbstractStudies on breeding biology enable us to broaden our understanding of the evolution of life history strategies. We studied the breeding biology of the Green-backed Tit (Parus monticolus) to provide comprehensive data on nest and egg characteristics, parental behavior throughout egg laying and nestling periods, and reproductive outcome. Our study reveals adaptive behavioral patterns and reproductive strategies for P. monticolus.


Sign in / Sign up

Export Citation Format

Share Document