Systematic Biology
Latest Publications


TOTAL DOCUMENTS

4417
(FIVE YEARS 284)

H-INDEX

181
(FIVE YEARS 13)

Published By Oxford University Press

1076-836x, 1063-5157

2021 ◽  
Vol 71 (1) ◽  
pp. A1-A1

2021 ◽  
Vol 70 (6) ◽  
pp. A6-A6

2021 ◽  
Author(s):  
Andrew J Helmstetter ◽  
Sylvain Glemin ◽  
Jos Käfer ◽  
Rosana Zenil-Ferguson ◽  
Herv Sauquet ◽  
...  

Abstract Estimating time-dependent rates of speciation and extinction from dated phylogenetic trees of extant species (timetrees), and determining how and why they vary, is key to understanding how ecological and evolutionary processes shape biodiversity. Due to an increasing availability of phylogenetic trees, a growing number of process-based methods relying on the birth-death model have been developed in the last decade to address a variety of questions in macroevolution. However, this methodological progress has regularly been criticised such that one may wonder how reliable the estimations of speciation and extinction rates are. In particular, using lineages-through-time (LTT) plots, a recent study (Louca and Pennell, 2020) has shown that there are an infinite number of equally likely diversification scenarios that can generate any timetree. This has led to questioning whether or not diversification rates should be estimated at all. Here we summarize, clarify, and highlight technical considerations on recent findings regarding the capacity of models to disentangle diversification histories. Using simulations we illustrate the characteristics of newly-proposed “pulled rates” and their utility. We recognize that the recent findings are a step forward in understanding the behavior of macroevolutionary modelling, but they in no way suggest we should abandon diversification modelling altogether. On the contrary, the study of macroevolution using phylogenetic trees has never been more exciting and promising than today. We still face important limitations in regard to data availability and methods, but by acknowledging them we can better target our joint efforts as a scientific community.


2021 ◽  
Author(s):  
Zhi Yan ◽  
Zhen Cao ◽  
Yushu Liu ◽  
Huw A Ogilvie ◽  
Luay Nakhleh

Abstract Phylogenetic networks provide a powerful framework for modeling and analyzing reticulate evolutionary histories. While polyploidy has been shown to be prevalent not only in plants but also in other groups of eukaryotic species, most work done thus far on phylogenetic network inference assumes diploid hybridization. These inference methods have been applied, with varying degrees of success, to data sets with polyploid species, even though polyploidy violates the mathematical assumptions underlying these methods. Statistical methods were developed recently for handling specific types of polyploids and so were parsimony methods that could handle polyploidy more generally yet while excluding processes such as incomplete lineage sorting. In this paper, we introduce a new method for inferring most parsimonious phylogenetic networks on data that include polyploid species. Taking gene tree topologies as input, the method seeks a phylogenetic network that minimizes deep coalescences while accounting for polyploidy. We demonstrate the performance of the method on both simulated and biological data. The inference method as well as a method for evaluating evolutionary hypotheses in the form of phylogenetic networks are implemented and publicly available in the PhyloNet software package.


2021 ◽  
Author(s):  
Emanuel Tschopp ◽  
James G Napoli ◽  
Lukardis C M Wencker ◽  
Massimo Delfino ◽  
Paul Upchurch

Abstract Generally, the species is considered to be the only naturally occurring taxon. However, species recognised and defined using different species delimitation criteria cannot readily be compared, impacting studies of biodiversity through Deep Time. This comparability issue is particularly marked when comparing extant with extinct species, because the only available data for species delimitation in fossils is derived from their preserved morphology, which is generally restricted to osteology in vertebrates. Here, we quantify intraspecific, intrageneric, and intergeneric osteological variability in extant species of lacertid lizards using pairwise dissimilarity scores based on a dataset of 253 discrete osteological characters for 99 specimens referred to 24 species. Variability is always significantly lower intraspecifically than between individuals belonging to distinct species of a single genus, which is in turn significantly lower than intergeneric variability. Average values of intraspecific variability and associated standard deviations are consistent (with few exceptions), with an overall average within a species of 0.208 changes per character scored. Application of the same methods to six extinct lacertid species (represented by 40 fossil specimens) revealed that intraspecific osteological variability is inconsistent, which can at least in part be attributed to different researchers having unequal expectations of the skeletal dissimilarity within species units. Such a divergent interpretation of intraspecific and interspecific variability among extant and extinct species reinforces the incomparability of the species unit. Lacertidae is an example where extant species recognised and defined based on a number of delimitation criteria show comparable and consistent intraspecific osteological variability. Here, as well as in equivalent cases, application of those skeletal dissimilarity values to palaeontological species delimitation potentially provides a way to ameliorate inconsistencies created by the use of morphology to define species.


2021 ◽  
Author(s):  
David A Duchêne ◽  
Niklas Mather ◽  
Cara Van Der Wal ◽  
Simon Y W Ho

Abstract The historical signal in nucleotide sequences becomes eroded over time by substitutions occurring repeatedly at the same sites. This phenomenon, known as substitution saturation, is recognized as one of the primary obstacles to deep-time phylogenetic inference using genome-scale data sets. We present a new test of substitution saturation and demonstrate its performance in simulated and empirical data. For some of the 36 empirical phylogenomic data sets that we examined, we detect substitution saturation in around 50% of loci. We found that saturation tends to be flagged as problematic in loci with highly discordant phylogenetic signals across sites. Within each data set, the loci with smaller numbers of informative sites are more likely to be flagged as containing problematic levels of saturation. The entropy saturation test proposed here is sensitive to high evolutionary rates relative to the evolutionary timeframe, while also being sensitive to several factors known to mislead phylogenetic inference, including short internal branches relative to external branches, short nucleotide sequences, and tree imbalance. Our study demonstrates that excluding loci with substitution saturation can be an effective means of mitigating the negative impact of multiple substitutions on phylogenetic inferences. [Phylogenetic model performance; phylogenomics; substitution model; substitution saturation; test statistics.]


2021 ◽  
Author(s):  
Victor A Vera-Ruiz ◽  
John Robinson ◽  
Lars S Jermiin

Abstract In molecular phylogenetics, it is typically assumed that the evolutionary process for DNA can be approximated by independent and identically distributed Markovian processes at the variable sites and that these processes diverge over the edges of a rooted bifurcating tree. Sometimes the nucleotides are transformed from a 4-state alphabet to a 3- or 2-state alphabet by a procedure that is called recoding, lumping, or grouping of states. Here, we introduce a likelihood-ratio test for lumpability for DNA that has diverged under different Markovian conditions, which assesses the assumption that the Markovian property of the evolutionary process over each edge is retained after recoding of the nucleotides. The test is derived and validated numerically on simulated data. To demonstrate the insights that can be gained by using the test, we assessed two published data sets, one of mitochondrial DNA from a phylogenetic study of the ratites and the other of nuclear DNA from a phylogenetic study of yeast. Our analysis of these data sets revealed that recoding of the DNA eliminated some of the compositional heterogeneity detected over the sequences. However, the Markovian property of the original evolutionary process was not retained by the recoding, leading to some significant distortions of edge lengths in reconstructed trees.[Evolutionary processes; likelihood-ratio test; lumpability; Markovian processes; Markov models; phylogeny; recoding of nucleotides.]


2021 ◽  
Author(s):  
Robert J Asher ◽  
Martin R Smith

Abstract An unprecedented amount of evidence now illuminates the phylogeny of living mammals and birds on the Tree of Life. We use this tree to measure phylogenetic value of data typically used in paleontology (bones and teeth) from six datasets derived from five published studies. We ask three interrelated questions: 1) Can these data adequately reconstruct known parts of the Tree of Life? 2) Is accuracy generally similar for studies using morphology, or do some morphological datasets perform better than others? 3) Does the loss of non-fossilizable data cause taxa to occur in misleadingly basal positions? Adding morphology to DNA datasets usually increases congruence of resulting topologies to the well corroborated tree, but this varies among morphological datasets. Extant taxa with a high proportion of missing morphological characters can greatly reduce phylogenetic resolution when analyzed together with fossils. Attempts to ameliorate this by deleting extant taxa missing morphology are prone to decreased accuracy due to long-branch artefacts. We find no evidence that fossilization causes extinct taxa to incorrectly appear at or near topologically basal branches. Morphology comprises the evidence held in common by living taxa and fossils, and phylogenetic analysis of fossils greatly benefits from inclusion of molecular and morphological data sampled for living taxa, whatever methods are used for phylogeny estimation.


Sign in / Sign up

Export Citation Format

Share Document