scholarly journals Multispecies integrated population model reveals bottom-up dynamics in a seabird predator-prey system

2020 ◽  
Author(s):  
Maud Quéroué ◽  
Christophe Barbraud ◽  
Frédéric Barraquand ◽  
Daniel Turek ◽  
Karine Delord ◽  
...  

AbstractAssessing the effects of climate and interspecific relationships on communities is challenging because of the complex interplay between species population dynamics, their interactions, and the need to integrate information across several biological levels (individuals – populations – communities). Usually used to quantify species interactions, integrated population models (IPMs) have recently been extended to communities. These models allow fitting multispecies matrix models to data from multiple sources while simultaneously accounting for various sources of uncertainty in each data source. We used multispecies IPMs accommodating climate conditions to quantify the relative contribution of climate vs. interspecific interactions on demographic parameters, such as survival and breeding success, in the dynamics of a predator-prey system. We considered a stage-structured predator–prey system combining 22 years of capture–recapture data and population counts of two seabirds, the Brown Skua (Catharacta lönnbergi) and its main prey the Blue Petrel (Halobaena caerulea) both breeding on the Kerguelen Islands in the Southern Ocean. Our results showed that climate and predator-prey interactions drive the demography of skuas and petrels in different ways. The breeding success of skuas appeared to be largely driven by the number of petrels and to a lesser extent by intraspecific density-dependence. In contrast, there was no evidence of predation effects on the demographic parameters of petrels, which were affected by oceanographic factors (chlorophyll a and sea surface temperature anomalies). We conclude that bottom-up mechanisms are the main drivers of this skua-petrel system. We discuss the mechanisms by which climate variability and predator-prey relationships may affect the demographic parameters of these seabirds. Taking into account both species interactions and environmental covariates in the same analysis improved our understanding of species dynamics.

2020 ◽  
Vol 23 (6) ◽  
pp. 983-993 ◽  
Author(s):  
Canan Karakoç ◽  
Adam Thomas Clark ◽  
Antonis Chatzinotas

2021 ◽  
Author(s):  
Maud Quéroué ◽  
Christophe Barbraud ◽  
Frédéric Barraquand ◽  
Daniel Turek ◽  
Karine Delord ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document