scholarly journals Adaptive integration of self-motion and goals in posterior parietal cortex

2020 ◽  
Author(s):  
Andrew S. Alexander ◽  
Janet C. Tung ◽  
G. William Chapman ◽  
Laura E. Shelley ◽  
Michael E. Hasselmo ◽  
...  

AbstractAnimals engage in a variety of navigational behaviors that require different regimes of behavioral control. In the wild, rats readily switch between foraging and more complex behaviors such as chase, wherein they pursue other rats or small prey. These tasks require vastly different tracking of multiple behaviorally-significant variables including self-motion state. It is unknown whether changes in navigational context flexibly modulate the encoding of these variables. To explore this possibility, we compared self-motion processing in the multisensory posterior parietal cortex while rats performed alternating blocks of free foraging and visual target pursuit. Animals performed the pursuit task and demonstrated predictive processing by anticipating target trajectories and intercepting them. Relative to free exploration, pursuit sessions yielded greater proportions of parietal cortex neurons with reliable sensitivity to self-motion. Multiplicative gain modulation was observed during pursuit which increased the dynamic range of tuning and led to enhanced decoding accuracy of self-motion state. We found that self-motion sensitivity in parietal cortex was history-dependent regardless of behavioral context but that the temporal window of self-motion tracking was extended during target pursuit. Finally, many self-motion sensitive neurons conjunctively tracked the position of the visual target relative to the animal in egocentric coordinates, thus providing a potential coding mechanism for the observed gain changes to self-motion signals. We conclude that posterior parietal cortex dynamically integrates behaviorally-relevant information in response to ongoing task demands.

10.1038/9219 ◽  
1999 ◽  
Vol 2 (6) ◽  
pp. 563-567 ◽  
Author(s):  
M. Desmurget ◽  
C. M. Epstein ◽  
R. S. Turner ◽  
C. Prablanc ◽  
G. E. Alexander ◽  
...  

2009 ◽  
Vol 1164 (1) ◽  
pp. 236-238 ◽  
Author(s):  
Barry M. Seemungal ◽  
Vincenzo Rizzo ◽  
Michael A. Gresty ◽  
John C. Rothwell ◽  
Adolfo M. Bronstein

2017 ◽  
Author(s):  
Eric Avila ◽  
Kaushik J Lakshminarasimhan ◽  
Gregory C DeAngelis ◽  
Dora E Angelaki

ABSTRACTNeurons in the macaque posterior parietal cortex are known to encode the direction of self-motion. But do they also encode one’s speed? To test this, we performed neural recordings from area 7a while monkeys were passively translated or rotated at various speeds. Visual stimuli were delivered as optic flow fields and vestibular stimuli were generated by a motion platform. Under both conditions, the responses of a fraction of neurons scaled linearly with self-motion speed, and speed-selective neurons were not localized to specific layers or columns. We analyzed ensembles of simultaneously recorded neurons and found that the precision of speed representation was sufficient to support path integration over modest distances. Our findings describe a multisensory neural code for linear and angular self-motion speed in the posterior parietal cortex of the macaque brain, and suggest a potential role for this representation.


2008 ◽  
Vol 20 (6) ◽  
pp. 1054-1062 ◽  
Author(s):  
Domenica Bueti ◽  
Bahador Bahrami ◽  
Vincent Walsh

The recent upsurge of interest in brain mechanisms of time perception is beginning to converge on some new starting points for investigating this long under studied aspect of our experience. In four experiments, we asked whether disruption of normal activity in human MT/V5 would interfere with temporal discrimination. Although clearly associated with both spatial and motion processing, MT/V5 has not yet been implicated in temporal processes. Following predictions from brain imaging studies that have shown the parietal cortex to be important in human time perception, we also asked whether disruption of either the left or right parietal cortex would interfere with time perception preferentially in the auditory or visual domain. The results show that the right posterior parietal cortex is important for timing of auditory and visual stimuli and that MT/V5 is necessary for timing only of visual events.


1990 ◽  
Vol 5 (6) ◽  
pp. 609-613 ◽  
Author(s):  
Leah Krubitzer ◽  
Jon Kaas

AbstractThe first (V-I) and second (V-II) visual areas of primates contain three types of anatomical segregations of neurons as parts of hypothesized “P-B” or “color”, “P-I” or “form,” and “M” or “motion” processing channels. These channels remain distinct in relays of P-B and P-I information to the inferior temporal lobe via V-II and dorsolateral visual cortex for object recognition, and “M” information to posterior parietal cortex via the middle temporal visual area (MT) for visual tracking and attention. The present anatomical experiments demonstrate another channel where “P-B” modules in V-I and “P-B” and “M” modules in V-II merge in the projections to the dorsomedial visual area (DM), which relays to MT and posterior parietal cortex. This integrative area may function in unifying our perception of the visual world, and may allow “color” as well as “motion” to play a role in visual tracking and attention.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Julie Ouerfelli-Ethier ◽  
Romeo Salemme ◽  
Romain Fournet ◽  
Christian Urquizar ◽  
Laure Pisella ◽  
...  

Abstract Anti-saccades are eye movements that require inhibition to stop the automatic saccade to the visual target and to perform instead a saccade in the opposite direction. The inhibitory processes underlying anti-saccades have been primarily associated with frontal cortex areas for their role in executive control. Impaired performance in anti-saccades has also been associated with the parietal cortex, but its role in inhibitory processes remains unclear. Here, we tested the assumption that the dorsal parietal cortex contributes to spatial inhibition processes of contralateral visual target. We measured anti-saccade performance in 2 unilateral optic ataxia patients and 15 age-matched controls. Participants performed 90 degree (across and within visual fields) and 180 degree inversion anti-saccades, as well as pro-saccades. The main result was that our patients took longer to inhibit visually guided saccades when the visual target was presented in the ataxic hemifield and the task required a saccade across hemifields. This was observed through anti-saccades latencies and error rates. These deficits show the crucial role of the dorsal posterior parietal cortex in spatial inhibition of contralateral visual target representations to plan an accurate anti-saccade toward the ipsilesional side.


2009 ◽  
Author(s):  
Philip Tseng ◽  
Cassidy Sterling ◽  
Adam Cooper ◽  
Bruce Bridgeman ◽  
Neil G. Muggleton ◽  
...  

2018 ◽  
Author(s):  
Imogen M Kruse

The near-miss effect in gambling behaviour occurs when an outcome which is close to a win outcome invigorates gambling behaviour notwithstanding lack of associated reward. In this paper I postulate that the processing of concepts which are deemed controllable is rooted in neurological machinery located in the posterior parietal cortex specialised for the processing of objects which are immediately actionable or controllable because they are within reach. I theorise that the use of a common machinery facilitates spatial influence on the perception of concepts such that the win outcome which is 'almost complete' is perceived as being 'almost within reach'. The perceived realisability of the win increases subjective reward probability and the associated expected action value which impacts decision-making and behaviour. This novel hypothesis is the first to offer a neurological model which can comprehensively explain many empirical findings associated with the near-miss effect as well as other gambling phenomena such as the ‘illusion of control’. Furthermore, when extended to other compulsive behaviours such as drug addiction, the model can offer an explanation for continued drug-seeking following devaluation and for the increase in cravings in response to perceived opportunity to self-administer, neither of which can be explained by simple reinforcement models alone. This paper therefore provides an innovative and unifying perspective for the study and treatment of behavioural and substance addictions.


Sign in / Sign up

Export Citation Format

Share Document