scholarly journals Integrating genomics and multivariate evolutionary quantitative genetics: A case study of multivariate constraints on sexual selection in Drosophila serrata

2021 ◽  
Author(s):  
Adam J Reddiex ◽  
Stephen Chenoweth

In evolutionary quantitative genetics, the genetic variance-covariance matrix, G, and the vector of directional selection gradients, β , are key parameters for predicting multivariate selection responses and genetic constraints. Historically, investigations of G and β have not overlapped with those dissecting the genetic basis of quantitative traits. Thus, it remains unknown whether these parameters reflect pleiotropic effects at individual loci. Here, we integrate multivariate GWAS with G and β estimation in a well-studied system of multivariate constraint; sexual selection on male cuticular hydrocarbons (CHCs) in Drosophila serrata. In a panel of wild-derived resequenced lines, we augment genome-based REML, (GREML) to estimate G alongside multivariate SNP effects, detecting 532 significant associations from 1,652,276 SNPs. Constraint was evident, with β lying in a direction of G with low evolvability. Interestingly, minor frequency alleles typically increased male CHC-attractiveness suggesting opposing natural selection on β. SNP effects were significantly misaligned with the major eigenvector of G, gmax, but well aligned to the second and third eigenvectors g2 and g3. We discuss potential factors leading to these varied results including multivariate stabilising selection and mutational bias. Our framework may be useful as researchers increasingly access genomic methods to study multivariate selection responses in wild populations.

2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Adam J. Reddiex ◽  
Stephen F. Chenoweth

In evolutionary quantitative genetics, the genetic variance–covariance matrix, G , and the vector of directional selection gradients, β , are key parameters for predicting multivariate selection responses and genetic constraints. Historically, investigations of G and β have not overlapped with those dissecting the genetic basis of quantitative traits. Thus, it remains unknown whether these parameters reflect pleiotropic effects at individual loci. Here, we integrate multivariate genome-wide association study (GWAS) with G and β estimation in a well-studied system of multivariate constraint: sexual selection on male cuticular hydrocarbons (CHCs) in Drosophila serrata . In a panel of wild-derived re-sequenced lines, we augment genome-based restricted maximum likelihood to estimate G alongside multivariate single nucleotide polymorphism (SNP) effects, detecting 532 significant associations from 1 652 276 SNPs. Constraint was evident, with β lying in a direction of G with low evolvability. Interestingly, minor frequency alleles typically increased male CHC-attractiveness suggesting opposing natural selection on β . SNP effects were significantly misaligned with the major eigenvector of G , g max , but well aligned to the second and third eigenvectors g 2 and g 3 . We discuss potential factors leading to these varied results including multivariate stabilizing selection and mutational bias. Our framework may be useful as researchers increasingly access genomic methods to study multivariate selection responses in wild populations.


2009 ◽  
Vol 36 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Neus Martínez-Abadías ◽  
Carolina Paschetta ◽  
Soledad de Azevedo ◽  
Mireia Esparza ◽  
Rolando González-José

2012 ◽  
Vol 2 (2) ◽  
pp. 287-297 ◽  
Author(s):  
Ann J. Stocker ◽  
Bosco B. Rusuwa ◽  
Mark J. Blacket ◽  
Francesca D. Frentiu ◽  
Mitchell Sullivan ◽  
...  

2016 ◽  
Vol 3 (10) ◽  
pp. 160463 ◽  
Author(s):  
Wolfgang Goymann ◽  
Ignas Safari ◽  
Christina Muck ◽  
Ingrid Schwabl

The decision to provide parental care is often associated with trade-offs, because resources allocated to parental care typically cannot be invested in self-maintenance or mating. In most animals, females provide more parental care than males, but the reason for this pattern is still debated in evolutionary ecology. To better understand sex differences in parental care and its consequences, we need to study closely related species where the sexes differ in offspring care. We investigated parental care in relation to offspring growth in two closely related coucal species that fundamentally differ in sex roles and parental care, but live in the same food-rich habitat with a benign climate and have a similar breeding phenology. Incubation patterns differed and uniparental male black coucals fed their offspring two times more often than female and male white-browed coucals combined. Also, white-browed coucals had more ‘off-times’ than male black coucals, during which they perched and preened. However, these differences in parental care were not reflected in offspring growth, probably because white-browed coucals fed their nestlings a larger proportion of frogs than insects. A food-rich habitat with a benign climate may be a necessary, but—perhaps unsurprisingly—is not a sufficient factor for the evolution of uniparental care. In combination with previous results (Goymann et al . 2015 J. Evol. Biol . 28 , 1335–1353 ( doi:10.1111/jeb.12657 )), these data suggest that white-browed coucals may cooperate in parental care, because they lack opportunities to become polygamous rather than because both parents were needed to successfully raise all offspring. Our case study supports recent theory suggesting that permissive environmental conditions in combination with a particular life history may induce sexual selection in females. A positive feedback loop among sexual selection, body size and adult sex-ratio may then stabilize reversed sex roles in competition and parental care.


Behaviour ◽  
2004 ◽  
Vol 141 (3) ◽  
pp. 327-341 ◽  
Author(s):  
Wolf Blanckenhorn ◽  
Claudia Mühlhäuser

AbstractIn the common dung or black scavenger fly Sepsis cynipsea (Diptera: Sepsidae) several morphological and behavioural male and female traits interact during mating. Previous studies show that males attempt to mount females without courtship, females use vigorous shaking behaviour in response to male mounting, the duration of shaking is an indicator of both direct and indirect female choice and sexual conflict, and larger males enjoy a mating advantage. We conducted a quantitative genetic paternal half sib study to investigate the genetic underpinnings of these traits, notably body size (the preferred trait) and the associated female preference, and to assess the relative importance of various models generally proposed to account for the evolution of sexually selected traits. Several morphological traits and female shaking duration were heritable, thus meeting a key requirement of all sexual selection models. In contrast, two traits indicative of male persistence in mating were not. Male longevity was also heritable and negatively correlated with his mating effort, suggesting a mating cost. However, the crucial genetic correlation between male body size and female shaking duration, predicted to be negative by both 'good genes' and Fisherian models and positive by the sexual conflict (or chase-away) model, was zero. This could be because of low power, or because of constraints imposed by the genetic correlation structure. Based on our rsults we conclude that discriminating sexual selection models by sole means of quantitative genetics is difficult, if not impossible.


Sign in / Sign up

Export Citation Format

Share Document