scholarly journals A Reinforcement Learning Framework for Pooled Oligonucleotide Design

2021 ◽  
Author(s):  
Benjamin M David ◽  
Ryan M Wyllie ◽  
Ramdane Harouaka ◽  
Paul A Jensen

The goal of oligonucleotide (oligo) design is to select oligos that optimize a set of design criteria. Oligo design problems are combinatorial in nature and require computationally intensive models to evaluate design criteria. Even relatively small problems can be intractable for brute-force approaches that test every possible combination of oligos, so heuristic approaches must be used to find near-optimal solutions. We present a general reinforcement learning framework, called OligoRL, to solve oligo design problems with complex constraints. OligoRL allows "black-box" design criteria and can be adapted to solve many oligo design problems. We highlight the flexibility of OligoRL by building tools to solve three distinct design problems: 1.) finding pools of random DNA barcodes that lack restriction enzyme recognition sequences (CutFreeRL); 2.) compressing large, non-degenerate oligo pools into smaller degenerate ones (OligoCompressor); and 3.) finding Not-So-Random hexamer primer pools that avoid rRNA and other unwanted transcripts during RNA-seq library preparation (NSR-RL). OligoRL demonstrates how reinforcement learning offers a general solution for complex oligo design problems. OligoRL and its associated software tools are available as a Julia package at http://jensenlab.net/tools.

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Karim El-Laithy ◽  
Martin Bogdan

An integration of both the Hebbian-based and reinforcement learning (RL) rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.


2021 ◽  
pp. 1-1
Author(s):  
Syed Khurram Mahmud ◽  
Yuanwei Liu ◽  
Yue Chen ◽  
Kok Keong Chai

2021 ◽  
Vol 12 (6) ◽  
pp. 1-23
Author(s):  
Shuo Tao ◽  
Jingang Jiang ◽  
Defu Lian ◽  
Kai Zheng ◽  
Enhong Chen

Mobility prediction plays an important role in a wide range of location-based applications and services. However, there are three problems in the existing literature: (1) explicit high-order interactions of spatio-temporal features are not systemically modeled; (2) most existing algorithms place attention mechanisms on top of recurrent network, so they can not allow for full parallelism and are inferior to self-attention for capturing long-range dependence; (3) most literature does not make good use of long-term historical information and do not effectively model the long-term periodicity of users. To this end, we propose MoveNet and RLMoveNet. MoveNet is a self-attention-based sequential model, predicting each user’s next destination based on her most recent visits and historical trajectory. MoveNet first introduces a cross-based learning framework for modeling feature interactions. With self-attention on both the most recent visits and historical trajectory, MoveNet can use an attention mechanism to capture the user’s long-term regularity in a more efficient way. Based on MoveNet, to model long-term periodicity more effectively, we add the reinforcement learning layer and named RLMoveNet. RLMoveNet regards the human mobility prediction as a reinforcement learning problem, using the reinforcement learning layer as the regularization part to drive the model to pay attention to the behavior with periodic actions, which can help us make the algorithm more effective. We evaluate both of them with three real-world mobility datasets. MoveNet outperforms the state-of-the-art mobility predictor by around 10% in terms of accuracy, and simultaneously achieves faster convergence and over 4x training speedup. Moreover, RLMoveNet achieves higher prediction accuracy than MoveNet, which proves that modeling periodicity explicitly from the perspective of reinforcement learning is more effective.


Sign in / Sign up

Export Citation Format

Share Document