scholarly journals Paving the way for human vaccination against Rift Valley fever virus: A systematic literature review of RVFV epidemiology from 1999 to 2021

Author(s):  
Keli N Gerken ◽  
A. Desiree LaBeaud ◽  
Henshaw Mandi ◽  
Maïna L’Azou Jackson ◽  
J. Gabrielle Breugelmans ◽  
...  

Background: Rift Valley fever virus (RVFV) is a lethal threat to humans and livestock in many parts of Africa, Arabia, and the Indian Ocean. This systematic review’s objective was to consolidate understanding of RVFV epidemiology during 1999-2021 and highlight knowledge gaps relevant to plans for human vaccine trials. Methodology/Principal Findings: The review is registered with PROSPERO (CRD42020221622). Reports of RVFV infection or exposure among humans, animals, and/or vectors in Africa, the Arabian Peninsula, and the Indian Ocean during the period January 1999 to June 2021 were eligible for inclusion. Online databases were searched for publications, and supplemental materials were recovered from official reports and research colleagues. Exposures were classified into five groups: 1) acute human RVF cases, 2) acute animal cases, 3) human RVFV sero-surveys, 4) animal sero-surveys, and 5) insect infections. Human risk factors, circulating RVFV lineages, and surveillance methods were also tabulated. In meta-analysis of risks, summary odds ratios were computed using random-effects modeling. 1104 unique human or animal RVFV transmission events were reported in 39 countries during 1999-2021. Outbreaks among humans or animals occurred at rates of 5.8/year and 12.4/year, respectively, with Mauritania, Madagascar, Kenya, South Africa, and Sudan having the most human outbreak years. Men had greater odds of RVFV infection than women, and animal contact, butchering, milking, and handling aborted material were significantly associated with greater odds of exposure. Animal risk was linked to location, proximity to water, and exposure to other herds or wildlife. RVFV was detected in a variety of mosquito vectors during interepidemic periods, confirming ongoing transmission. Conclusions/Significance: With broad variability in surveillance, case finding, survey design, and RVFV case confirmation, combined with uncertainty about populations-at-risk, there were inconsistent results from location to location. However, it was evident that RVFV transmission is expanding its range and frequency. Gaps assessment indicated the need to harmonize human and animal surveillance and improve diagnostics and genotyping. Given the frequency of RVFV outbreaks, human vaccination has strong potential to mitigate the impact of this now widely endemic disease.

2017 ◽  
Vol 39 (3) ◽  
pp. 22-25
Author(s):  
Elysse N. Grossi-Soyster ◽  
A. Desiree LaBeaud

Rift Valley fever virus (RVFV) is a mosquito-borne Bunyavirus that currently affects livestock and humans, causing a wide spectrum of symptoms. RVFV was confined to the African continent for many decades and spread to the Arabian Peninsula in recent history. The potential for widespread emergence into new regions and populations is possible and likely, as many outbreaks are driven by human behaviour and livestock trade. While many imported human cases have been detected, establishment of the virus in new geographic areas will depend on amplification in dense animal populations. Western and European countries have identified a substantial risk for the emergence of RVFV, as agricultural industries constitute a large percentage of the global economy.


1950 ◽  
Vol 5 (5) ◽  
pp. 243-247
Author(s):  
Minoru MATSUMOTO ◽  
Saburo IWASA ◽  
Motosige ENDO

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0128215 ◽  
Author(s):  
Nazly Shafagati ◽  
Lindsay Lundberg ◽  
Alan Baer ◽  
Alexis Patanarut ◽  
Katherine Fite ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Halima Rhazi ◽  
Najete Safini ◽  
Karima Mikou ◽  
Meryeme Alhyane ◽  
Khalid Omari Tadlaoui ◽  
...  

Abstract Background Animal vaccination is an important way to stop the spread of diseases causing immense damage to livestock and economic losses and the potential transmission to humans. Therefore effective method for vaccine production using simple and inexpensive bioprocessing solutions is very essential. Conventional culture systems currently in use, tend to be uneconomic in terms of labor and time involved. Besides, they offer a limited surface area for growth of cells. In this study, the CelCradle™-500A was evaluated as an alternative to replace conventional culture systems in use such as Cell factories for the production of viral vaccines against small ruminant morbillivirus (PPR), rift valley fever virus (RVF) and lumpy skin disease virus (LSD). Results Two types of cells Vero and primary Lamb Testis cells were used to produce these viruses. The study was done in 2 phases as a) optimization of cell growth and b) virus cultivation. Vero cells could be grown to significantly higher cell densities of 3.04 × 109 using the CelCradle™-500A with a shorter doubling time as compared to 9.45 × 108 cells in Cell factories. This represents a 19 fold increase in cell numbers as compared to seeding vs only 3.7 fold in Cell factories. LT cells achieved modestly higher cell densities of 6.7 × 108 as compared to 6.3 × 108 in Cell factories. The fold change in densities for these cells was 3 fold in the CelCradle™-500A vs 2.5 fold in Cell factories. The titers in the conventional system and the bioreactor were not significantly different. However, the Cell-specific virus yield for rift valley fever virus and lumpy skin disease virus are higher (25 virions/cell for rift valley fever virus, and 21.9 virions/cell for lumpy skin disease virus versus 19.9 virions/cell for rift valley fever virus and 10 virions/cell for lumpy skin disease virus). Conclusions This work represents a novel study for primary lamb testis cell culture in CellCradle™-500A bioreactors. In addition, on account of the high cell densities obtained and the linear scalability the titers could be further optimized using other culture process such us perfusion.


2018 ◽  
Vol 12 (5) ◽  
pp. e0006474 ◽  
Author(s):  
Darci R. Smith ◽  
Sara C. Johnston ◽  
Ashley Piper ◽  
Miriam Botto ◽  
Ginger Donnelly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document