scholarly journals Modelling the coupling of the M-clock and C-clock in lymphatic muscle cells

2021 ◽  
Author(s):  
Edward J Hancock ◽  
Scott D Zawieja ◽  
Charlie Macaskill ◽  
Michael J Davis ◽  
Christopher D Bertram

Lymphoedema develops due to chronic dysfunction of the lymphatic vascular system which results in fluid accumulation between cells. The condition is commonly acquired secondary to diseases such as cancer or the therapies associated with it. The primary driving force for fluid return through the lymphatic vasculature is provided by contractions of the muscularized lymphatic collecting vessels, driven by electrical oscillations. However, there is an incomplete understanding of the molecular and bioelectric mechanisms involved in lymphatic muscle cell excitation, hampering the development and use of pharmacological therapies. Modelling in silico has contributed greatly to understanding the contributions of specific ion channels to the cardiac action potential, but modelling of these processes in lymphatic muscle remains limited. Here, we propose a model of oscillations in the membrane voltage (M-clock) and intracellular calcium concentrations (C-clock) of lymphatic muscle cells. We modify a model by Imtiaz and colleagues to enable the M-clock to drive the C-clock oscillations. This approach differs from typical models of calcium oscillators in lymphatic and related cell types, but is required to fit recent experimental data. We include an additional voltage dependence in the gating variable control for the L type calcium channel, enabling the M-clock to oscillate independently of the C-clock. We use phase-plane analysis to show that these M-clock oscillations are qualitatively similar to those of a generalised FitzHugh-Nagumo model. We also provide phase plane analysis to understand the interaction of the M-clock and C-clock oscillations. The model and methods have the potential to help determine mechanisms and find targets for pharmacological treatment of lymphoedema.

Author(s):  
David G. Costa ◽  
Hossein Tehrani

In this paper we use phase-plane analysis to study one-dimensional p-Laplacian semi-positone problems under general sub-(p – 1)linear, asymptotically (p – 1)-linear, and super-(p – 1)linear conditions.


2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Alessandro Fonda ◽  
Andrea Sfecci

AbstractWe prove the existence of a periodic solution to a nonlinear impact oscillator, whose restoring force has an asymptotically linear behavior. To this aim, after regularizing the problem, we use phase-plane analysis, and apply the Poincaré-Bohl fixed point Theorem to the associated Poincaré map, so to find a periodic solution of the regularized problem. Passing to the limit, we eventually find the “bouncing solution” we are looking for.


2021 ◽  
Vol 90 ◽  
pp. 203-204
Author(s):  
C. Rodrigues ◽  
M. Correia ◽  
J. Abrantes ◽  
B. Rodrigues ◽  
J. Nadal

2012 ◽  
Vol 2012 (04) ◽  
pp. P04004 ◽  
Author(s):  
Vandana Yadav ◽  
Rajesh Singh ◽  
Sutapa Mukherji

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fanfan Chen ◽  
Dingbian Qian ◽  
Xiying Sun ◽  
Yinyin Wu

<p style='text-indent:20px;'>We prove the existence and multiplicity of subharmonic solutions for bounded coupled Hamiltonian systems. The nonlinearities are assumed to satisfy Landesman-Lazer conditions at the zero eigenvalue, and to have some kind of sublinear behavior at infinity. The proof is based on phase plane analysis and a higher dimensional version of the Poincaré-Birkhoff twist theorem by Fonda and Ureña. The results obtained generalize the previous works for scalar second-order differential equations or relativistic equations to higher dimensional systems.</p>


Sign in / Sign up

Export Citation Format

Share Document