zero eigenvalue
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3156
Author(s):  
Yanlin Li ◽  
Ali H. Alkhaldi ◽  
Akram Ali ◽  
Pişcoran Laurian-Ioan

In this paper, we obtain some topological characterizations for the warping function of a warped product pointwise semi-slant submanifold of the form Ωn=NTl×fNϕk in a complex projective space CP2m(4). Additionally, we will find certain restrictions on the warping function f, Dirichlet energy function E(f), and first non-zero eigenvalue λ1 to prove that stable l-currents do not exist and also that the homology groups have vanished in Ωn. As an application of the non-existence of the stable currents in Ωn, we show that the fundamental group π1(Ωn) is trivial and Ωn is simply connected under the same extrinsic conditions. Further, some similar conclusions are provided for CR-warped product submanifolds.


2021 ◽  
Vol 47 (6) ◽  
Author(s):  
Andreas Kleefeld

AbstractThe hot spots conjecture is only known to be true for special geometries. This paper shows numerically that the hot spots conjecture can fail to be true for easy to construct bounded domains with one hole. The underlying eigenvalue problem for the Laplace equation with Neumann boundary condition is solved with boundary integral equations yielding a non-linear eigenvalue problem. Its discretization via the boundary element collocation method in combination with the algorithm by Beyn yields highly accurate results both for the first non-zero eigenvalue and its corresponding eigenfunction which is due to superconvergence. Additionally, it can be shown numerically that the ratio between the maximal/minimal value inside the domain and its maximal/minimal value on the boundary can be larger than 1 + 10− 3. Finally, numerical examples for easy to construct domains with up to five holes are provided which fail the hot spots conjecture as well.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2841
Author(s):  
Juan-Luis García-Zapata ◽  
Clara Grácio

Spectral techniques are often used to partition the set of vertices of a graph, or to form clusters. They are based on the Laplacian matrix. These techniques allow easily to integrate weights on the edges. In this work, we introduce a p-Laplacian, or a generalized Laplacian matrix with potential, which also allows us to take into account weights on the vertices. These vertex weights are independent of the edge weights. In this way, we can cluster with the importance of vertices, assigning more weight to some vertices than to others, not considering only the number of vertices. We also provide some bounds, similar to those of Chegeer, for the value of the minimal cut cost with weights at the vertices, as a function of the first non-zero eigenvalue of the p-Laplacian (an analog of the Fiedler eigenvalue).


Author(s):  
Alessio Falocchi ◽  
Filippo Gazzola

AbstractWe study the Stokes eigenvalue problem under Navier boundary conditions in $$C^{1,1}$$ C 1 , 1 -domains $$\Omega \subset \mathbb {R}^3$$ Ω ⊂ R 3 . Differently from the Dirichlet boundary conditions, zero may be the least eigenvalue. We fully characterize the domains where this happens and we show that the ball is the unique domain where the zero eigenvalue is not simple, it has multiplicity three. We apply these results to show the validity/failure of a suitable Poincaré-type inequality. The proofs are obtained by combining analytic and geometric arguments.


2021 ◽  
Vol 94 (5) ◽  
Author(s):  
György Szabó ◽  
Balázs Király

AbstractTwo-person games are used in many multi-agent mathematical models to describe pair interactions. The type (pure or mixed) and the number of Nash equilibria affect fundamentally the macroscopic behavior of these systems. In this paper, the general features of Nash equilibria are investigated systematically within the framework of matrix decomposition for n strategies. This approach distinguishes four types of elementary interactions that each possess fundamentally different characteristics. The possible Nash equilibria are discussed separately for different types of interactions and also for their combinations. A relation is established between the existence of infinitely many mixed Nash equilibria and the zero-eigenvalue eigenvectors of the payoff matrix.


Author(s):  
Wadim Gerner

AbstractWe characterise the boundary field line behaviour of Beltrami flows on compact, connected manifolds with vanishing first de Rham cohomology group. Namely we show that except for an at most nowhere dense subset of the boundary, on which the Beltrami field may vanish, all other field lines at the boundary are smoothly embedded 1-manifolds diffeomorphic to $${\mathbb {R}}$$ R , which approach the zero set as time goes to $$\pm \, \infty$$ ± ∞ . We then drop the assumptions of compactness and vanishing de Rham cohomology and prove that for almost every point on the given manifold, the field line passing through the point is either a non-constant, periodic orbit or a non-periodic orbit which comes arbitrarily close to the starting point as time goes to $$\pm \infty$$ ± ∞ . During the course of the proof, we in particular show that the set of points at which a Beltrami field vanishes in the interior of the manifold is countably 1-rectifiable in the sense of Federer and hence in particular has a Hausdorff dimension of at most 1. As a consequence, we conclude that for every eigenfield of the curl operator, corresponding to a non-zero eigenvalue, there always exists exactly one nodal domain.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Jin Chen ◽  
Babak Haghighat ◽  
Hee-Cheol Kim ◽  
Marcus Sperling

Abstract Quantum curves arise from Seiberg-Witten curves associated to 4d $$ \mathcal{N} $$ N = 2 gauge theories by promoting coordinates to non-commutative operators. In this way the algebraic equation of the curve is interpreted as an operator equation where a Hamiltonian acts on a wave-function with zero eigenvalue. We find that this structure generalises when one considers torus-compactified 6d $$ \mathcal{N} $$ N = (1, 0) SCFTs. The corresponding quantum curves are elliptic in nature and hence the associated eigenvectors/eigenvalues can be expressed in terms of Jacobi forms. In this paper we focus on the class of 6d SCFTs arising from M5 branes transverse to a ℂ2/ℤk singularity. In the limit where the compactified 2-torus has zero size, the corresponding 4d $$ \mathcal{N} $$ N = 2 theories are known as class $$ {\mathcal{S}}_k $$ S k . We explicitly show that the eigenvectors associated to the quantum curve are expectation values of codimension 2 surface operators, while the corresponding eigenvalues are codimension 4 Wilson surface expectation values.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 399
Author(s):  
Nathan Ramusat ◽  
Vincenzo Savona

Simulating the dynamics and the non-equilibrium steady state of an open quantum system are hard computational tasks on conventional computers. For the simulation of the time evolution, several efficient quantum algorithms have recently been developed. However, computing the non-equilibrium steady state as the long-time limit of the system dynamics is often not a viable solution, because of exceedingly long transient features or strong quantum correlations in the dynamics. Here, we develop an efficient quantum algorithm for the direct estimation of averaged expectation values of observables on the non-equilibrium steady state, thus bypassing the time integration of the master equation. The algorithm encodes the vectorized representation of the density matrix on a quantum register, and makes use of quantum phase estimation to approximate the eigenvector associated to the zero eigenvalue of the generator of the system dynamics. We show that the output state of the algorithm allows to estimate expectation values of observables on the steady state. Away from critical points, where the Liouvillian gap scales as a power law of the system size, the quantum algorithm performs with exponential advantage compared to exact diagonalization.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fanfan Chen ◽  
Dingbian Qian ◽  
Xiying Sun ◽  
Yinyin Wu

<p style='text-indent:20px;'>We prove the existence and multiplicity of subharmonic solutions for bounded coupled Hamiltonian systems. The nonlinearities are assumed to satisfy Landesman-Lazer conditions at the zero eigenvalue, and to have some kind of sublinear behavior at infinity. The proof is based on phase plane analysis and a higher dimensional version of the Poincaré-Birkhoff twist theorem by Fonda and Ureña. The results obtained generalize the previous works for scalar second-order differential equations or relativistic equations to higher dimensional systems.</p>


Author(s):  
Hélène Perrin

AbstractWe study upper bounds for the first non-zero eigenvalue of the Steklov problem defined on finite graphs with boundary. For finite graphs with boundary included in a Cayley graph associated to a group of polynomial growth, we give an upper bound for the first non-zero Steklov eigenvalue depending on the number of vertices of the graph and of its boundary. As a corollary, if the graph with boundary also satisfies a discrete isoperimetric inequality, we show that the first non-zero Steklov eigenvalue tends to zero as the number of vertices of the graph tends to infinity. This extends recent results of Han and Hua, who obtained a similar result in the case of $$\mathbb {Z}^n$$ Z n . We obtain the result using metric properties of Cayley graphs associated to groups of polynomial growth.


Sign in / Sign up

Export Citation Format

Share Document