scholarly journals Local climate and vernalization requirements explain the latitudinal patterns of flowering initiation in the crop wild relative Linum bienne

2022 ◽  
Author(s):  
Beatrice Landoni ◽  
Pilar Suarez-Montes ◽  
Rico H. F. Habeahan ◽  
Adrian C. Brennan ◽  
Rocio Perez-Barrales

Background and Aims: Days to flowering initiation in species with large geographic distributions often correlate with latitude. Latitude reflects climatic gradients, but it is unclear if large-scale differentiation in flowering results from adaptation to local climate, and whether adaptation to local climate could constrain shifts in distribution and colonization of new environments. Methods: In its Western range in Europe, L. bienne populations were surveyed to describe latitudinal patterns of flowering initiation and determine its correlation with the local climate of populations. This was measured under standardized greenhouse conditions, with a vernalization experiment to learn if chilling advances flowering, and with a reciprocal transplant experiment at three sites along the latitudinal gradient, recording flowering at the central site and plant survival in all sites. Also, genetic differentiation of populations along the latitudinal range was studied using microsatellite markers. Key Results: Flowering initiation varied with latitude, with southern populations flowering earlier than northern populations. Latitude also predicted population response to vernalization, with chilling inducing a greater advance of flowering initiation in northern than southern populations. In general, plant survival in the reciprocal transplant experiment decreased with the geographic distance of populations to the experimental site and, at the central site, flowering initiation varied with latitude of origin. However, across experiments, the local climate of populations better predicted the differentiation in flowering initiation and vernalization response than latitude of origin. Finally, the microsatellite data revealed genetic differentiation of populations forming two groups that agree with a Mediterranean and Atlantic lineage. Conclusions: The consistent result across experiments of a latitudinal cline in flowering initiation and in the vernalization response suggests that flowering is under genetic regulation and yet dependent on particular environmental and climatic cues at local scale. However, the genetic differentiation suggests that past population history might influenced the flowering initiation patterns detected.

1995 ◽  
Vol 73 (S1) ◽  
pp. 302-310 ◽  
Author(s):  
R. A. Ennos ◽  
K. C. McConnell

Naturally occurring genetic markers can be exploited in a number of ways to measure natural selection in fungal populations. The potentials and pitfalls of these approaches are outlined. A review of existing experiments that have used genetic markers to estimate selection coefficients (s) in experimental and natural fungal populations indicates that differences in fitness between clones, populations, and subspecies may be substantial (mean s = 0.322), and that significant changes in the intensity and direction of selection may occur when environmental conditions alter. A reciprocal transplant experiment is described in which the relative selective values of three genetically marked populations of the canker pathogen Crumenulopsis sororia were compared under natural conditions. Large differences in selective value were found both among populations and within sites, but there was no evidence that genetic differentiation among populations was adaptive. The potential application of genetic markers for experimentally investigating mechanisms of speciation, adaptive genetic differentiation, and response to environmental change in fungi is discussed. Key words: genetic marker, natural selection, selection coefficient, Crumenulopsis sororia.


2013 ◽  
Vol 35 (3) ◽  
pp. 220-227 ◽  
Author(s):  
Zhaojun Bu ◽  
Xu Chen ◽  
Håkan Rydin ◽  
Shengzhong Wang ◽  
Jinze Ma ◽  
...  

The Condor ◽  
2019 ◽  
Vol 121 (1) ◽  
Author(s):  
Stephen J Brenner ◽  
Bill Buffum ◽  
Brian C Tefft ◽  
Scott R McWilliams

Abstract The multiscale nature of habitat selection during the breeding season for migratory birds means that core-use areas (e.g., breeding territories) are selected based on their local habitat features, but these may also be influenced in some way by features within a larger-scale landscape. We conducted a reciprocal transplant experiment to test the hypothesis that habitat selection and movements of male American Woodcock (Scolopax minor) in core-use areas during the breeding season depend on the perceived quality of the surrounding landscape. We captured second-year male woodcocks (n = 19) at high- or low-likelihood of use landscapes in Rhode Island, USA, affixed each with a radio transmitter, relocated them to the opposite type of landscape, and then determined if they returned to their original site of capture or remained in the landscape to which they were relocated. Birds captured in high-likelihood landscapes and moved to low-likelihood landscapes generally returned to their original high-likelihood landscape (5/7, 71%), but birds captured in low-likelihood landscapes and moved to high-likelihood landscapes rarely returned to their original low-likelihood landscape (1/12, 8%). These results support the hypothesis that woodcock assess their surroundings relatively rapidly and subsequently make critical settlement decisions based on landscape composition. Given that woodcock choice is predicted by the woodcock-specific resource selection function, these results also provide support for the use of this tool to guide forest management for woodcock.


2016 ◽  
Vol 17 (3) ◽  
pp. 370-380 ◽  
Author(s):  
Primrose J. Boynton ◽  
Rike Stelkens ◽  
Vienna Kowallik ◽  
Duncan Greig

Sign in / Sign up

Export Citation Format

Share Document